微尺度输流管道考虑热效应的流固耦合振动分析

梁 峰,包日东

振动与冲击 ›› 2015, Vol. 34 ›› Issue (5) : 141-144.

PDF(1087 KB)
PDF(1087 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (5) : 141-144.
论文

微尺度输流管道考虑热效应的流固耦合振动分析

  • 研究热环境中输送微流体的微尺度管道流固耦合振动问题。根据线性热弹性理论建立系统振动控制方程,并利用复模态法对其进行求解,得到了系统的固有频率和屈曲失稳临界流速,讨论了温度变化、微尺度效应及管道壁厚对系统振动特性的影响。研究结果表明:提高环境温度会降低系统的固有频率和临界流速;管道和流体的微尺度效应分别会使临界流速升高和降低,但微流体的这种影响会随着温度的升高而逐渐减弱并最终消失;管壁较薄(外径接近微尺度特征尺寸)时,壁厚的变化对固有频率的影响很大,而管壁较厚时,温度变化对固有频率的影响更为明显。
作者信息 +

Fluid-structure interaction of microtubes conveying fluid accounting for thermal effect

  • In this study, the fluid-structure interaction (FSI) properties of microtubes conveying micro-flow in temperature field are investigated. The governing equation of the system is established based on the linear thermoelastic theory and then solved by using the complex mode method. The natural frequency and critical flow velocity for buckling instability are obtained and the influences of temperature variation, micro size effect and tube thickness on the vibration characteristics are discussed. The results obtained show that increasing temperatures decreases the natural frequency and critical flow velocity; size effects of the microtube and micro-flow can increase and decrease the critical flow velocity, respectively, however that effect of micro-flow declines and even disappears with increasing temperatures; variation of tube thickness greatly affects the natural frequency at small thicknesses (the outer diameter near the characteristic length of micro-structures), however temperature variation has dominant effect on the natural frequency at large thicknesses.
Author information +
文章历史 +

摘要

研究热环境中输送微流体的微尺度管道流固耦合振动问题。根据线性热弹性理论建立系统振动控制方程,并利用复模态法对其进行求解,得到了系统的固有频率和屈曲失稳临界流速,讨论了温度变化、微尺度效应及管道壁厚对系统振动特性的影响。研究结果表明:提高环境温度会降低系统的固有频率和临界流速;管道和流体的微尺度效应分别会使临界流速升高和降低,但微流体的这种影响会随着温度的升高而逐渐减弱并最终消失;管壁较薄(外径接近微尺度特征尺寸)时,壁厚的变化对固有频率的影响很大,而管壁较厚时,温度变化对固有频率的影响更为明显。

Abstract

In this study, the fluid-structure interaction (FSI) properties of microtubes conveying micro-flow in temperature field are investigated. The governing equation of the system is established based on the linear thermoelastic theory and then solved by using the complex mode method. The natural frequency and critical flow velocity for buckling instability are obtained and the influences of temperature variation, micro size effect and tube thickness on the vibration characteristics are discussed. The results obtained show that increasing temperatures decreases the natural frequency and critical flow velocity; size effects of the microtube and micro-flow can increase and decrease the critical flow velocity, respectively, however that effect of micro-flow declines and even disappears with increasing temperatures; variation of tube thickness greatly affects the natural frequency at small thicknesses (the outer diameter near the characteristic length of micro-structures), however temperature variation has dominant effect on the natural frequency at large thicknesses.

关键词

微尺度输流管道 / 流固耦合 / 热效应 / 温度 / 尺度效应

Key words

microtube conveying fluid / fluid-structure interaction / thermal effect / temperature / size effect

引用本文

导出引用
梁 峰,包日东. 微尺度输流管道考虑热效应的流固耦合振动分析[J]. 振动与冲击, 2015, 34(5): 141-144
LIANG Feng,BAO Ri-dong. Fluid-structure interaction of microtubes conveying fluid accounting for thermal effect[J]. Journal of Vibration and Shock, 2015, 34(5): 141-144

参考文献

[1] 付永领, 荆惠强. 弯管转角对液压管道振动特性影响分析[J]. 振动与冲击, 2013, 32(13): 165-169.
FU Yong-ling, JING Hui-qiang. Elbow angle effect on hydraulic pipeline vibration characteristics [J]. Journal of Vibration and Shock, 2013, 32(13): 165-169.
[2] 张计光, 陈立群, 钱跃竑. Winkler地基上黏弹性输流管的参数共振稳定性[J]. 振动与冲击, 2013, 32(13): 137-141.
ZHANG Ji-guang, CHEN Li-qun, QIAN Yue-hong. Dynamic stability of parametric resonance for a viscoelastic pipe conveying pulsating fluid on Winkler elastic foundation [J]. Journal of Vibration and Shock, 2013, 32(13): 137-141.
[3] Yang T Z, Ji S D, Yang X D, et al. Microfluid-induced nonlinear free vibration of microtubes [J]. International Journal of Engineering Science, 2014, 76: 47-55.
[4] Najmzadeh M, Haasl S, Enoksson P. A silicon straight tube fluid density sensor [J]. Journal of Micromechanics and Microengineering, 2007, 17(8): 1657-1663.
[5] Rinaldi S, Probhakar S, Vengallatore S, et al. Dynamics of microscale pipes containing internal fluid flow: damping frequency shift and stability [J]. Journal of Sound and Vibration, 2010, 329(8): 1081-1088.
[6] McFarland A W, Colton J S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors [J]. Journal of Micromechanics and Microengineering, 2005, 15(5): 1060-1067.
[7] Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1477-1508.
[8] Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity: theory and experiment [J]. Acta Metallurgica et Materialia, 1994, 42(2): 475-487.
[9] Paїdoussis M P, Luu T P, Probhakar S. Dynamics of a long tubular cantilever conveying fluid downwards, which then flows upwards around the cantilever as a confined annular flow [J]. Journal of Fluids and Structures, 2008, 24(1): 111-128.
[10] Wang L. Size-dependent vibration characteristics of fluid-conveying microtubes [J]. Journal of Fluids and Structures, 2010, 26(4): 675-684.
[11] Yin L, Qian Q, Wang L. Strain gradient beam model for dynamics of microscale pipes conveying fluid [J]. Applied Mathematical Modelling, 2011, 35(6): 2864-2873.
[12] Xia W, Wang L. Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory [J]. Microfluidics and Nanofluidics, 2010, 9(4-5): 955-962.
[13] Wang L, Liu H T, Ni Q, et al. Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure [J]. International Journal of Engineering Science, 2013, 71: 92-101.
[14] Qian Q, Wang L, Ni Q. Instability of simply supported pipes conveying fluid under thermal loads [J]. Mechanics Research Communications, 2009, 36(3): 413-417.
[15] Chang T P. Thermal-mechanical vibration and instability of a fluid-conveying single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory [J]. Applied Mathematical Modelling, 2012, 36(5): 1964-1973.
[16] Zhen Y X, Fang B, Tang Y. Thermal-mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium [J]. Physica E, 2011, 44(2): 379-385.
[17] Ansari R, Hemmatnezhad M, Rezapour J. The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions [J]. Current Applied Physics, 2011, 11(3): 692-697.

PDF(1087 KB)

Accesses

Citation

Detail

段落导航
相关文章

/