对7m长高铁车厢白车身划分子系统,根据能量平衡方程确立子系统总损耗因子、内损耗因子和耦合损耗因子的关系,通过测量总损耗因子和能量比可以直接计算内损耗因子和耦合损耗因子。为了准确测量总损耗因子,计算中采用Hilbert变换求瞬态信号对数衰减率的方法,其创新点在于不需要测量输入功率就可以得到完整方程并获得统计能量分析参数。内损耗因子和耦合损耗因子的计算结果可以为建立车厢能量统计模型提供数据参考。
Abstract
The train carriage body in white (BIW), with the length of 7 meters, is divided into 6 subsystems. Based on the energy balance equation, the interrelation of total loss factor, internal loss factor and coupling loss factor of subsystems can be determined. Therefore, Internal loss factor and coupling loss factor can be calculated by using experimental results of total loss factor and the energy ratio. In order to improve the accuracy of experimental results of total loss factor, a method of Hilbert transform, in which input power does not need to be measured, is introduced to calculate logarithmic decrement of transient response. Parameter results of loss factors can be used for building up statistical energy analysis(SEA) model of high speed railway carriage.
关键词
白车身 /
统计能量分析 /
总损耗因子 /
内损耗因子 /
耦合损耗因子 /
Hilbert变换
{{custom_keyword}} /
Key words
body in white (BIW) /
statistical energy analysis(SEA) /
total loss factor /
internal loss factor /
coupling loss factor /
Hilbert transform
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] R.H. Lyon, R.G. DeJong, M. Heckl. Theory and application of statistical energy analysis. The Journal of the Acoustical Society of America[J]. 1995, 98(6): 3021-3021.
[2] L. Maxit, J.-L. Guyader. Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, part I: theory. J Sound Vib[J]. 2001, 239(5): 907-930.
[3] D.A. Bies, S. Hamid. determination of loss and coupling loss factors by the power injection method. J Sound Vib[J]. 1980, 70(2): 187-204.
[4] W. Liu, M.S. Ewing. Experimental and Analytical Estimation of Loss Factors by the Power Input Method. AIAA Journal[J]. 2007, 45(2): 477-484.
[5] 张红亮, 孔宪仁, 刘源等. 宽频域的内损耗因子实验辨识方法研究. 振动与冲击[J]. 2013, 32(12): 179-184.
Zhang Hong-liang, Kong Xian-ren, Liu Yuan, etc.. Test identification of damping loss factor in a wider frequency range. Journal of Vibration and Shock[J].2013, 32(12):179-184.
[6] L. Wu, A. Agren. Analysis of initial decay rate in relation to estimates of loss factor and equivalent mass in experimental SEA. ISMA 21[J]. 1996: 187-198.
[7] B.C. Bloss, M.D. Rao. Estimation of frequency-averaged loss factors by the power injection and the impulse response decay methods. The Journal of the Acoustical Society of America[J]. 2005, 117: 240-249.
[8] R. Cabell, N. Schiller, A. Allen, etc.. Loss factor estimation using the impulse response decay method on a stiffened structure [C]. Inter-Noise 2009, Ottawa, Canada, 2009.
[9] 毛伯永, 谢石林, 张希农. 冲击载荷识别的瞬态统计能量分析方法. 振动与冲击[J]. 2013, 32(14): 46-51.
Mao bo-yong, Xie Shi-lin, Zhang Xi-ning. Identification of impact load based on transient statistical energy analysis method. Journal of Vibration and Shock[J]. 2013, 32(14): 46-51.
[10] 程广利, 关成彬, 胡生亮. 基于 Hilbert 变换的结构内损耗因子测试研究. 噪声与振动控制[J]. 2006, 26(4): 105-107.
Cheng Guang-li, Guan Cheng-bin, Hu Sheng-liang. Study on the Measurement of Structure's Internal Loss Factor based on Hilbert Transform[J]. NOISE AND VIBRATION CONTROL. 2006, 26(4): 105-107.
[11] 明瑞森, 孙进才. 非保守耦合结构间耦合损耗因子的计算. 西北工业大学学报[J]. 1989, 7(1): 39-46.
Ming Ruisen, Sun Jincai. Calculation of coupling loss factor of non-conservatively coupled structures. Journal of Northwestern Polytechnical University[J]. 1989, 7(1): 39-46.
[12] 姚德源, 王其政. 统计能量分析原理及其应用[M]. 北京理工大学出版社, 1995.
[13] 孙进才. 复杂结构的损耗因子和耦合损耗因子的测量方法. 声学学报[J]. 1995, 20(2): 127-134.
Sun Jincai. Measuring method of dissipation and coupling loss factors for complex structures. ACTA ACUSTICA[J]. 1995, 20(2): 127-134.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}