空间站柔性太阳翼热诱发振动分析

孔祥宏,王志瑾

振动与冲击 ›› 2015, Vol. 34 ›› Issue (5) : 220-227.

PDF(2068 KB)
PDF(2068 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (5) : 220-227.
论文

空间站柔性太阳翼热诱发振动分析

  • 柔性太阳翼随空间站在轨运行时会受到周期性的热载荷作用,为研究热载荷对柔性太阳翼的影响,采用热-结构非耦合分析方法对柔性太阳翼进行了热诱发振动分析。提出了等效位移法,按照节点位移等效原则计算柔性太阳翼有限元模型各节点的等效温度载荷,再以该载荷为激励计算柔性太阳翼的动态响应。通过自编的Python程序实现等效温度载荷计算过程中的数据处理,以及热诱发振动分析流程中的有限元前后处理。通过与理论解和数值解作对比,验证了基于等效位移法求解等效温度载荷并用于非耦合热诱发振动分析的方法的准确性。通过对柔性太阳翼的热诱发振动分析,得到了柔性太阳翼的动态响应数据,发现了柔性太阳翼出地球阴影区时的刚柔耦合情况。分析结果可以为柔性太阳翼的设计和改进以及在轨的安全性、可靠性的评估提供参考。
作者信息 +

Thermally Induced Vibration Analysis of Space Station’s Flexible Solar Wing

  • The flexible solar wing(FSW) suffers from periodic thermal load when running on orbit with space station. In order to investigate the effect of thermal load on the FSW, an uncoupled thermal-structural analysis method is used to thermally induced vibration analysis(TIVA) of the FSW. Finite element(FE) method and equivalent displacement principle of nodes are used to calculate the equivalent temperature loads(ETLs) of the nodes of FSW’s FE model and then calculate the dynamic response of the FSW under the ETLs. Self-compiled Python programs are used to process the data for the calculation of ETLs and complete FE pre and post-processing for TIVA. Compared with the theoretic and numerical results, it is proved that the TIVA method is accurate. By the TIVA, the dynamic response of FSW is gotten, and the rigid-flexible coupling phenomenon of FSW is found out. The result of TIVA can offer a reference to design and improvement of FSW, and can also be used to assess the security and reliability of FSW.
Author information +
文章历史 +

摘要

柔性太阳翼随空间站在轨运行时会受到周期性的热载荷作用,为研究热载荷对柔性太阳翼的影响,采用热-结构非耦合分析方法对柔性太阳翼进行了热诱发振动分析。提出了等效位移法,按照节点位移等效原则计算柔性太阳翼有限元模型各节点的等效温度载荷,再以该载荷为激励计算柔性太阳翼的动态响应。通过自编的Python程序实现等效温度载荷计算过程中的数据处理,以及热诱发振动分析流程中的有限元前后处理。通过与理论解和数值解作对比,验证了基于等效位移法求解等效温度载荷并用于非耦合热诱发振动分析的方法的准确性。通过对柔性太阳翼的热诱发振动分析,得到了柔性太阳翼的动态响应数据,发现了柔性太阳翼出地球阴影区时的刚柔耦合情况。分析结果可以为柔性太阳翼的设计和改进以及在轨的安全性、可靠性的评估提供参考。

Abstract

The flexible solar wing(FSW) suffers from periodic thermal load when running on orbit with space station. In order to investigate the effect of thermal load on the FSW, an uncoupled thermal-structural analysis method is used to thermally induced vibration analysis(TIVA) of the FSW. Finite element(FE) method and equivalent displacement principle of nodes are used to calculate the equivalent temperature loads(ETLs) of the nodes of FSW’s FE model and then calculate the dynamic response of the FSW under the ETLs. Self-compiled Python programs are used to process the data for the calculation of ETLs and complete FE pre and post-processing for TIVA. Compared with the theoretic and numerical results, it is proved that the TIVA method is accurate. By the TIVA, the dynamic response of FSW is gotten, and the rigid-flexible coupling phenomenon of FSW is found out. The result of TIVA can offer a reference to design and improvement of FSW, and can also be used to assess the security and reliability of FSW.

关键词

柔性太阳翼 / 热诱发振动 / 位移等效原则 / 等效温度载荷 / 刚柔耦合

Key words

flexible solar wing / thermally induced vibration / equivalent displacement principle / equivalent temperature load / rigid-flexible coupling

引用本文

导出引用
孔祥宏,王志瑾. 空间站柔性太阳翼热诱发振动分析[J]. 振动与冲击, 2015, 34(5): 220-227
KONG Xiang-hong, WANG Zhi-jin . Thermally Induced Vibration Analysis of Space Station’s Flexible Solar Wing[J]. Journal of Vibration and Shock, 2015, 34(5): 220-227

参考文献

1. Boley B A. Thermally induced vibrations of beams[J]. Journal of the Aeronautical Science, 1956, 23(2): 179-181.
 Manolis G D, Beskos D E. Thermally induced vibrations of beam structures[J]. Computer Methods in Applied Mechanics and Engineering, 1980, 21(3): 337-355.
2. Seibert A G, Rice J S. Coupled thermally induced vibrations of beams[J]. AIAA Journal, 1973, 11(7): 1033-1035.
 Kidawa-Kukla J. Application of the Green functions to the problem of the thermally induced vibration of a beam[J]. Journal of Sound and Vibration, 2003, 262(4): 865-876.
3. Wattanasakulpong N, Gangadhara P B, Kelly D W. Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams[J]. International Journal of Mechanical Sciences, 2011, 53(9): 734-743.
4Shen Z, Tian Q, Liu X, et al. Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation[J]. Aerospace Science and Technology, 2013, 29(1): 386-393.
5. 孙良新, 范绪箕. 热载荷作用下层合板瞬态响应分析[J]. 振动工程学报, 1989, 2(4): 12-22.
SUN Liang-xin, FAN Xu-ji. Transient response analysis of laminated composite plate subjected to suddenly applied heating[J]. Journal of Vibration Engineering, 1989, 2(4): 12-22.
6. 夏巍, 杨智春. 热环境下复合材料壁板的振动特性分析[J]. 应用力学学报, 2005, 22(3): 359-363.
XIA Wei, YANG Zhi-chun. Vibration analysis to composite panels in thermal environment[J]. Chinese Journal of Applied Mechanics, 2005, 22(3): 359-363.
7. 常晓权, 罗志伟, 郑钢铁. 基于混合单元建模的复合板热诱导结构振动研究[J]. 振动与冲击, 2006, 25(3): 18-24.
CHANG Xiao-quan, LUO Zhi-wei, ZHENG Gang-tie. Thermally induced vibration analysis of thin composite plate based on hybrid element model[J]. Journal of Vibration and Shock, 2006, 25(3): 18-24.
8. Singha M K, Ramachandra L S, Bandyopadhyay J N. Vibration behavior of thermally stressed composite skew plate[J]. Journal of Sound and Vibration, 2006, 296(4): 1093-1102.
9. Tran T Q N, Lee H P, Lim S P. Structural intensity analysis of thin laminated composite plates subjected to thermally induced vibration[J]. Composite Structures, 2007, 78(1): 70-83.
10. 赵寿根, 王静涛, 黎康, 等. 考虑辐射散热叠层板热诱发振动的有限元分析[J]. 力学学报, 2010, 5: 978-982.
ZHAO Shou-gen, WANG Jiang-tao, LI Kang, et al. Finite element method analysis of thermally induced vibration of laminated plates considering radiation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 5: 978-982.
11. Panda S K, Singh B N. Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre[J]. Aerospace Science and Technology, 2013.
12. 徐向华, 任建勋, 梁新刚. 近地倾斜轨道航天器在轨热辐射分析[J]. 太阳能学报, 2004, 25(5): 717-721.
XU Xiang-hua, REN Jian-xun, LIANG Xin-gang. Thermal radiation analysis of spacecraft on inclined near-earth orbit[J]. ACTA ENERGIAE SOLARIS SINICA, 2004, 25(5): 717-721.
13李鹏, 程惠尔. 太阳电池阵极月轨道在轨热分析[J]. 空间科学学报, 2006, 26(4): 303-308.
LI Peng, CHENG Hui-er. Thermal analysis of the solar array in the lunar orbit[J]. Chinese J. Space Sci., 2006, 26(4): 303-308.
14. 陈忠贵, 张志, 廖瑛. 航天器太阳翼在轨光照角度建模及仿真分析[J]. 航天器工程, 2012, 21(1): 37-42.
CHEN Zhong-gui, ZHANG Zhi, LIAO Ying.Modeling and simulation analysis of solar illumination angle on spacecraft solar wing in-orbit[J]. Spacecraft Engineering, 2012, 21(1): 37-42.
15. 黄后学, 刘振宇, 陈娅琪, 等. 不同工况下空间太阳电池翼的在轨热分析[J]. 上海交通大学学报, 2012, 46(005): 790-795.
HUANG Hou-xue, LIU Zhen-yu, CHEN Ya-qi, et al. Thermal analysis of solar panels in orbit under different operating conditions[J]. Journal of Shanghai Jiaotong University,2012, 46(005): 790-795.
16. 姚海民, 薛明德, 丁勇. 大型空间结构热诱发振动的有限元分析[J]. 清华大学学报 (自然科学版), 2002, 42(11): 1524-1527.
YAO Hai-min, XUE Ming-de, DING Yong. Thermally induced vibration analysis of large space structures using the finite element method[J]. J Tsinghua Univ. (Sci. & Tech.), 2002, 42(11): 1524-1527.
17. 陶建忠, 雷勇军. 大型柔性太阳电池翼模态参数计算[J]. 湖南理工学院学报 (自然科学版), 2003, 6(4): 33-36.
TAO Jian-zhong, LEI Yong-jun. Modal characteristics analysis of large flexible solar panel[J]. Journal of Hunan Institute of Science and Technology (Natural Sciences),,2003, 6(4): 33-36.
18. 黄彦文, 薛明德, 程乐锦, 等. 含开口薄壁杆的大型空间结构热诱发弯扭振动[J]. 清华大学学报 (自然科学版), 2005, 2: 262-266.
HUANG Yan-wen, XUE Ming-de, CHENG Le-jin, et al. Thermally induced vibrations of large space structures including thin-walled open beam sections[J].J Tsinghua Univ. (Sci. & Tech.), 2005, 2: 262-266.
19. 安翔, 冯刚. 某空间站太阳电池阵中央桁架热-结构耦合动力学分析[J]. 强度与环境, 2005, 32(3): 8-13.
AN Xiang, FENG Gang. Thermally induced vibration of the main mast of the space station’s solar arrays[J]. Structure & Environment Engineering, 2005, 32(3): 8-13.
20王焘, 冯刚, 张铎, 等. 柔性太阳电池阵的热-结构耦合分析[J]. 空间科学学报, 2002, 22(Ⅱ): 50-54.
WANG Tao, FENG Gang, ZHANG Duo, ed al. Analysis of heat-structure coupling on flexible solar cell series[J]. Chinese Journal of Space Science, 2002, 22(Ⅱ): 50-54.
21. 刘劲, 朱敏波, 曹罡. 星载可展开天线热振动数值分析[J]. 中国空间科学技术, 2011, 31(2): 53-57.
LIU Jin, ZHU Min-bo, CAO Gang. Numerical analysis of thermal induced vibration for deployable antenna[J].Chinese Space Science and Technology,2011, 31(2): 53-57.
22成新兴, 陈务军, 张淑杰. 空间充气可展薄膜天线热-结构耦合分析[J]. 四川兵工学报, 2011, 32(001): 127-131.
CHENG Xin-xing, CHEN Wu-jun, ZHANG Shu-jie. Coupled thermal-structural analysis of inflatable space membrane antenna[J]. Journal of Sichuan Ordnance, 2011, 32(001): 127-131.

PDF(2068 KB)

Accesses

Citation

Detail

段落导航
相关文章

/