智能桁架结构最优振动控制与作动器优化配置

曹玉岩,王志臣,付世欣,吴庆林

振动与冲击 ›› 2015, Vol. 34 ›› Issue (5) : 26-32.

PDF(2602 KB)
PDF(2602 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (5) : 26-32.
论文

智能桁架结构最优振动控制与作动器优化配置

  • 研究了智能桁架结构最优振动控制和作动器的优化配置问题。首先采用有限元方法,根据Hamilton原理推导了智能桁架结构的机电耦合动力学方程,根据线性二次型最优控制理论,推导了结构振动控制的数学模型,通过最小化性能泛函,求解黎卡提矩阵代数方程确定了最优控制输入。然后通过对最优控制性能指标函数的修正,得到了与初始状态无关的性能指标,以修正的性能指标为目标函数,应用模拟退火算法对作动器位置进行了优化配置。最后给出了空间智能桁架结构振动控制算例验证建模过程和算法。算例结果表明,通过最优振动控制可以使结构振动快速衰减,达到振动抑制的效果,而且通过模拟退火算法可以确定最佳的作动器布置方式。
作者信息 +

Optimal Vibration Control and Actuator Placement for Intelligent Truss Structures

  • The optimal vibration control and actuator placement for intelligent truss structures is investigated. Firstly, the mech-electric coupling dynamic formulation of piezoelectric intelligent truss structures based on the Hamilton principle is presented. The mathematical model of vibration control for truss structures is derived using Linear Quadratic Gauss optimal control theory. The input of optimal control is determined by minimizing performance function and solving Riccati algebraic equation. Then, the performance criterion unrelated to initial state is obtained through correcting the performance criterion of optimal control. The optimization of actuator position is performed using simulated annealing algorithm so as to minimize the corrected performance criterion. Finally, a numerical example of vibration control for spatial intelligent truss structure is given to verify the modeling process and optimization algorithm. Simulations results indicate that the suppression effect of vibration is obvious and the vibration responses decrease quickly by optimal vibration control. The optimal position of actuators can be determined by using simulated annealing algorithm.
Author information +
文章历史 +

摘要

研究了智能桁架结构最优振动控制和作动器的优化配置问题。首先采用有限元方法,根据Hamilton原理推导了智能桁架结构的机电耦合动力学方程,根据线性二次型最优控制理论,推导了结构振动控制的数学模型,通过最小化性能泛函,求解黎卡提矩阵代数方程确定了最优控制输入。然后通过对最优控制性能指标函数的修正,得到了与初始状态无关的性能指标,以修正的性能指标为目标函数,应用模拟退火算法对作动器位置进行了优化配置。最后给出了空间智能桁架结构振动控制算例验证建模过程和算法。算例结果表明,通过最优振动控制可以使结构振动快速衰减,达到振动抑制的效果,而且通过模拟退火算法可以确定最佳的作动器布置方式。

Abstract

The optimal vibration control and actuator placement for intelligent truss structures is investigated. Firstly, the mech-electric coupling dynamic formulation of piezoelectric intelligent truss structures based on the Hamilton principle is presented. The mathematical model of vibration control for truss structures is derived using Linear Quadratic Gauss optimal control theory. The input of optimal control is determined by minimizing performance function and solving Riccati algebraic equation. Then, the performance criterion unrelated to initial state is obtained through correcting the performance criterion of optimal control. The optimization of actuator position is performed using simulated annealing algorithm so as to minimize the corrected performance criterion. Finally, a numerical example of vibration control for spatial intelligent truss structure is given to verify the modeling process and optimization algorithm. Simulations results indicate that the suppression effect of vibration is obvious and the vibration responses decrease quickly by optimal vibration control. The optimal position of actuators can be determined by using simulated annealing algorithm.

关键词

智能桁架 / Hamilton原理 / 振动控制 / 模拟退火

Key words

Intelligent Truss / Hamilton theory / vibration control / simulated annealing

引用本文

导出引用
曹玉岩,王志臣,付世欣,吴庆林. 智能桁架结构最优振动控制与作动器优化配置[J]. 振动与冲击, 2015, 34(5): 26-32
CAO Yu-Yan, WANG Zhi-Chen, FU Shi-Xin,WU Qing-Lin. Optimal Vibration Control and Actuator Placement for Intelligent Truss Structures[J]. Journal of Vibration and Shock, 2015, 34(5): 26-32

参考文献

[1] Jos M. Simoes Moita, Victor M. Franco Correia, Pedro G. Martins, et al. Optimal design in vibration control of adaptive structures using a simulated annealing algorithm[J]. Composite Structures, 2006, 75(1):79-87.
[2] A. Muc, P. Kedziora. Optimal Design of Smart Laminated Composite Structures[J]. Materials And Manufacturing Processes, 2010, 25(4):272-280.
[3] H. Irschik. A review on static and dynamic shape control of structures by piezoelectric actuation[J]. Engineering Structures, 2002, 24(1):5-11.
[4] Mary I. Frecker. Recent Advances in Optimization of Smart Structures and Actuators[J]. Journal Of Intelligent Material Systems And Structures, 2003, 14(4-5):207-216.
[5] Jose S. Moita, Pedro G. Martins, Cristovao M. Mota Soares, et al. Optimal dynamic control of laminated adaptive structures using a higher order model and a genetic algorithm[J]. Computers & Structures, 2008, 86(3-5):198-206.
[6] 聂润兔, 邵成勋, 邹振祝. 智能桁架机电耦合动力分析与振动控制[J]. 振动工程学报,1997,10(02):3-8.
 R. T. NIE, C. X. SHAO and Z. Z. ZOU. Mech-Electric Coupling Dynamic Analysis and Vibration Control of Intelligent Truss Structures[J]. Journal of Vibration Engineering, 1997. 10(02): 3-8.
[7] Y. J. Yan, L. H. Yam. Optimal design of number and locations of actuators in active vibration control of a space truss[J]. Smart Materials and Structures, 2002, 11(4):496-503.
[8] 徐亚兰, 陈建军. 空间范数在压电柔性结构振动控制中的应用研究[J]. 工程力学,2013,30(10):1-4.
 Y. L. XU and J. J. CHEN. RESEARCH ON VIBRATION CONTROL OF PIEZOELECTRIC FLEXIBLE STRUCTURES BASED ON SPATIAL NORMS[J]. ENGINEERING MECHANICS, 2013. 30(10): 1-4.
[9] 谢永, 赵童, 梁辰, 等. 桁架结构振动主动控制的实验研究[J]. 力学季刊,2010,31(04):578-581.
 Y. XIE, T. ZHAO, C. LIANG, L. X. CHEN and G. P. CAI. Experimental Study of Active Control for a Trussed Structure[J]. CHINESE QUARTERLY OF MECHANICS, 2010. 31(04): 578-581.
[10] 曾光, 李东旭. 空间智能桁架作动器/传感器位置优化中的遗传算法应用[J]. 宇航学报,2007,28(2):461-464.
 G. ZENG and D. X. LI. Placement Optimization of ActuatorsPSensors of Space Intelligent Truss Using Genetic Algorithms[J]. Journal of Astronautics, 2007. 28(2): 461-464.
[11] 徐斌, 赵普猛, 黎莹. 区间参数压电智能桁架结构/控制的多目标非概率可靠性拓扑优化[J]. 振动工程学报,2013,26(02):169-177.
 B. XU, P. M. ZHAO and Y. LI. Multi-objective optimization for structural topology and control of piezoelectric smart truss with interval parameter considering non-probability reliability constraints[J]. Journal of Vibration Engineering, 2013. 26(02): 169-177.
[12] 彭海军, 王文胜, 程耿东. 基于物理降阶模型的桁架结构振动主动控制[J]. 工程力学,2013,30(12):1-7.
 H. J. PENG, W. S. WANG and G. D. CHEN. ACTIVE VIBRATION CONTROL OF A TRUSSED STRUCTURE BASED ON THE PHYSICAL REDUCED MODEL[J]. ENGINEERING MECHANICS, 2013. 30(12): 1-7.
[13] 赵国伟, 黄海, 夏人伟. 柔性自适应桁架及其振动最优控制实验[J]. 北京航空航天大学学报,2005,31(04):434-438.
 G. W. ZHAO, H. HUANG and R. W. XIA. Flexible adaptive truss testbed and its optimal control experiment for vibration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005. 31(04): 434-438.
[14] 李东旭. 大型挠性空间桁架结构动力学分析与模糊振动控制[M]. 北京: 科学出版社, 2008.
 D. X. LI. Dynamic Analysis and Fuzzy Vibration Control of Large Flexible Space Truss [M]. Beijing: Science Press, 2008.
[15] 司洪伟. 大挠性航天桁架结构动力学建模及其主动模糊控制研究[D]. 长沙: 国防科学技术大学, 2006.
   H.W. SI. Research on dynamic modeling and active fuzzy control of large flexible space truss[D]. Changsha: National University of Defense Technology, 2006.
[16] 龙连春. 智能桁架结构受力性态最优控制的建模与分析[D]. 北京: 北京工业大学, 2003.
   L.CH. LONG. Modeling and Analysis on Optimal Control for Loading Behavior of Intelligent Truss Structures[D]. Beijing: Beijing University of Technology, 2003.
[17] 刘豹, 唐万生. 现代控制理论[M]. 北京: 机械工业出版社, 2006.
 B.LIU and W.S.TANG. Modern Control Theory[M]. Beijing: China Machine Press, 2006.
[18] David L. Kleinman, Michael Athans. The Design of Suboptimal Linear Time-Varying Systems[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, 13(2):150-159.
 
 

PDF(2602 KB)

Accesses

Citation

Detail

段落导航
相关文章

/