薄壁圆锥管轴向压缩吸能特性研究

洪 武1,,徐 迎1,金丰年1,郭峰2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (5) : 88-94.

PDF(2354 KB)
PDF(2354 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (5) : 88-94.
论文

薄壁圆锥管轴向压缩吸能特性研究

  • 研究薄壁圆锥管轴向压缩吸能特性有助于其合理广泛应用于抗冲击、抗振动结构中。轴向倾角是使得圆锥管轴向压缩性能有别于直管的主要因素。当轴向倾角小于临界角度时,圆锥管平均轴向压缩力随倾角增加而变大但最大初始轴力会线性减小;吸能稳定因子随倾角增加而提高,但是比吸能却相应非线性降低。圆锥管在轴向压缩时过程中存在三种典型变形模式,分别为“钻石-堆叠”模式,“钻石-嵌套”模式及“环形-嵌套”模式,通过对“环形-嵌套”模式变形过程的观测及变形机理分析,建立了相应的理论模型,基于该理论模型给出了圆锥管“环形-嵌套”模式变形时吸能特性的预测方法。
作者信息 +

ENERGY ABSORBING CHARACTERISTICS OF TAPPERED CIRCULAR TUBE

  • Study of energy absorption performance of tapered circular tubes under axial compression could be helpful for their applications as anti-impaction and vibration devices. Tapered angle was the main factor which made tapered circular tubes behaved different from common circular tubes. Raising tapered angle would improve the energy absorption stability but weaken the energy absorption capability. Furthermore, the mean crushing force would be enhanced and the initial peak force would be cut down as tapered angle increasing.   Three representative deformation modes, ‘diamond-stack’ mode,’ diamond-radial’ mode and’ ring-radial concertina’ mode , could be ensured for tapered circular tubes under axial compression. Building up the theoretical model for “ring-radial concertina” mode and analyzing it with plastic theory, then, the ways of predicting the energy absorption ability of tapered circular tubes could be obtained.
Author information +
文章历史 +

摘要

研究薄壁圆锥管轴向压缩吸能特性有助于其合理广泛应用于抗冲击、抗振动结构中。轴向倾角是使得圆锥管轴向压缩性能有别于直管的主要因素。当轴向倾角小于临界角度时,圆锥管平均轴向压缩力随倾角增加而变大但最大初始轴力会线性减小;吸能稳定因子随倾角增加而提高,但是比吸能却相应非线性降低。圆锥管在轴向压缩时过程中存在三种典型变形模式,分别为“钻石-堆叠”模式,“钻石-嵌套”模式及“环形-嵌套”模式,通过对“环形-嵌套”模式变形过程的观测及变形机理分析,建立了相应的理论模型,基于该理论模型给出了圆锥管“环形-嵌套”模式变形时吸能特性的预测方法。

Abstract

Study of energy absorption performance of tapered circular tubes under axial compression could be helpful for their applications as anti-impaction and vibration devices. Tapered angle was the main factor which made tapered circular tubes behaved different from common circular tubes. Raising tapered angle would improve the energy absorption stability but weaken the energy absorption capability. Furthermore, the mean crushing force would be enhanced and the initial peak force would be cut down as tapered angle increasing.   Three representative deformation modes, ‘diamond-stack’ mode,’ diamond-radial’ mode and’ ring-radial concertina’ mode , could be ensured for tapered circular tubes under axial compression. Building up the theoretical model for “ring-radial concertina” mode and analyzing it with plastic theory, then, the ways of predicting the energy absorption ability of tapered circular tubes could be obtained.

关键词

薄壁结构 / 圆锥管 / 吸能机制

Key words

thin-walled structure / tapered circular tube / energy absorption mechanism

引用本文

导出引用
洪 武1,,徐 迎1,金丰年1,郭峰2. 薄壁圆锥管轴向压缩吸能特性研究[J]. 振动与冲击, 2015, 34(5): 88-94
HONG Wu 1,XU Ying 1, JIN Fengnian 1, GUO Feng 2. ENERGY ABSORBING CHARACTERISTICS OF TAPPERED CIRCULAR TUBE[J]. Journal of Vibration and Shock, 2015, 34(5): 88-94

参考文献

[1]Nagel GM, Thambiratnam DP. A numerical study on the impact response and energy absorption of tapered thin-walled tubes[J]. International Journal of Mechanical Sciences 2004; 46(2):201–216.
[2]Mamalis AG, Manolakos DE, Ioannidis NB, Kostazos PK. Numerical simulation of thin-walled metallic circular frusta subjected to axial loading[J]. International Journal Crashworthiness 2005; 10(5):505–513.
[3]Mamalis AG, Johnson W, Viegelahn GL. The crumpling of steel thin-walled tubes and frusta under axial compression at elevated strain rates: some experimental results[J]. International Journal of Mechanical Sciences 1984; 26:537–548.
[4]Mamalis AG, Johnson W. The quasi-static crumpling of thin-walled circular cylinders and frusta under axial compression[J]. International Journal of Mechanical Sciences 1983; 25(9):713–732.
[5]Mamalis AG, Manolakos DE, Viegelahn G, Vaxevanidis MN, Johnson W. On the in-extensional collapse of thin PVC conical shells[J]. International Journal of Mechanical Sciences 1986; 28(5):323 –335.
[6]Postlethwaite HE, Mills B. Use of collapsible structural elements as impact isolators with special reference to automotive applications[J]. Journal of strain analysis 1970; 5:58-73.
[7]Alexander JM. An approximate analysis of collapse of thin-walled cylindrical shells under axial loading[J]. Quarterly Journal of Mechanical and Applied Mathematics 1960; 13: 10-15.
[8]Mamalis AG, Manolakos DE,Viegelahn GL, Johnson W. Extensible plastic collapse of thin-wall frusta as energy absorbers[J]. International journal of mechanical science 1986; 28:219-229.
[9]Mamalis AG, Manolakos DE, Viegelahn GL, Johnson W. The modeling of the progressive extensible plastic collapse of thin-wall shells[J]. International journal of mechanical sciences 1988;30:249-261
[10]Alghamdi AAA. Design of simple collapsible energy absorber [M]. Master of science thesis, college of engineering King abdulaziz university, Jeddah, Saudi Arabia, 1991
[11]Aljawi AAN, Alghmdi AAA. Investigation of axially compressed frusta as impact energy absorbers[C]. In:Gaul L, Brebbia AA, editors. Computational methods in contact mechanics IV. Southampton: WIT Press, 1999.P.431-443
[12]Aljawi AAN, Alghmdi AAA. Axial crushing of frusta between two parallel plates[C]. In:Zhao XL,editos. Structural failure and plasticity, IMPLAST 2000.New York: perga-Mon, n, 2000, P.545-550
[13]Z. Ahmad, DP Thambiratnam. Crushing response of foam-filled conical tubes under quasi-static axial loading[J]. Materials and Design 2008; 30:2393–2403.
[14]Tongxi Yu, GX Lu.  Energy Absorption of Structures and Materials[M]. Wood-head Publishing, 2003.

PDF(2354 KB)

Accesses

Citation

Detail

段落导航
相关文章

/