针对非线性振动激励下结构声辐射问题,由变分原理导出Duffing振子激励下平板声振耦合动力学方程,由模态展开法及增量谐波平衡法导出轻流体中耦合动力学方程的近似解析解,给出多频激励下平板表面平均振速及辐射声功率表达式,研究激励力频率、非线性项对系统振动及声辐射特性影响。结果表明,Duffing振子激励下平板的声振耦合问题为含离散与连续系统的复杂动力学问题;耦合运动下Duffing振子出现二次跳跃现象与新的共振特性;平板声振特性主要由三次谐波决定。研究结果可为隔振结构的声振设计提供理论依据。
Abstract
For the acoustic radiation problem of structure under nonlinear vibration excitations, the vibro-acoustic coupling dynamic equations of plate under Duffing oscillator’s excitation were derived based on variational principle. The approximately analytical solution of coupled equations in light liquid was given by modal expansion and incremental harmonic balance method. The expressions of quadratic velocity and acoustic radiation power under multi-frequency also were given. Then the influences of excitation frequency and nonlinear stiffness to the nonlinear vibration and acoustic radiation were investigated. The results show that the vibro-acoustic coupling problem of plate under Duffing oscillator’s excitation is a complex dynamic problem containing discrete and continuous system. There are second jump phenomena and new resonant characters in Duffing oscillator’s motion. The vibro-acoustic characteristics of plate are determined by third harmonic component. The results are significant for the vibro-acoustic designing of vibration isolation.
关键词
Duffing振子 /
平板 /
非线性激励 /
增量谐波平衡法 /
声振特性
{{custom_keyword}} /
Key words
Duffing oscillator /
plate /
nonlinear excitations /
IHBM /
vibro-acoustic characteristics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
[2] 徐道临,吕永建,周加喜,等.非线性隔振器系统动力学特性分析的FFT多谐波平衡法[J].振动与冲击,2012,31(22):39-44.
XU Dao-lin, LüYong-jian, ZHOU Jia-xi, et al. FFT multi-harmonic balance method for dynamic analysis of a nonlinear vibration isolation system[J]. Journal of Vibration and Shock, 2012,31(22):39-44.
[3] 陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社,2007.
[4] Maidanik G. Response of ribbed panels to reverberant acoustic fields[J]. Journal of Acoust. Soc. Am., 1962,34: 809-826.
[5] Berry A, Guyader J, Nicolas J. A general formulation for the sound radiation from rectangular, baffled plates with arbitrary boundary conditions[J]. Journal of Acoust. Soc. Am., 1990, 88: 2792-2802.
[6] 黎胜,赵德有.结构声辐射的振动模态分析和声辐射模态分析研究[J].声学学报,2004, 29(3):200-208.
LI Sheng, ZHAO De-you. Research on modal analysis of structural acoustic radiation using structural vibration modes and acoustic radiation modes[J]. Acta Acustica, 2004, 29(3):200-208.
[7] Xie G, Thompson D J, Jones C J C. The radiation efficiency of baffled plates and strips[J]. Journal of Sound Vibration, 2005, 280:181-209.
[8] Li W L, Gibeling H J. Determination of the mutual radiation resistances of a rectangular plate and their impact on the radiation sound power[J]. Journal of Sound Vibration, 2000, 229(5): 1213-1233.
[9] Li W L.An analytical solution for self and mutual radiation resistances of a rectangular plate[J].Journal of Sound and Vibration, 2001, 245(1):1-16.
[10] 马牛静,王荣辉. 四边固定加劲板的非线性自由振动[J].力学学报,2011,43(5): 922-930.
MA Niu-jing, WANG Rong-hui. Nonlinear free vibration of stiffened plate with four edges clamped[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(5): 922-930.
[11] 杨智春,周建,谷迎松.超音速气流中受热曲壁板的非线性颤振特性[J].力学学报,2012,44(1): 30-38.
YANG Zhi-chun, ZHOU Jian, GU Ying-song. Nonlinear thermal flutter of heated curved panels in supersonic air flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(1): 30-38.
[12] 贾启芬,刘习军.机械与结构振动[M].天津:天津大学出版社,2007.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}