基于谱方法分析有阻尼负载圆柱壳频散特性

王献忠1, 2 吴卫国1,2 庞福振3,孔祥韶1,2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (6) : 13-17.

PDF(1620 KB)
PDF(1620 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (6) : 13-17.
论文

基于谱方法分析有阻尼负载圆柱壳频散特性

  • 以Chebyshev多项式系为基函数,采用谱方法离散弹性理论的波动方程,建立对应的广义特征值问题。依据壳体结构波运动、内部流体及外部阻尼材料在界面处的位移、应力连续条件,构造此复杂圆柱壳系统广义特征值方程。通过数值求解特征值获得对应频率下波数,进而获得圆柱壳结构的频散曲线。分别讨论充水与否、有阻尼负载圆柱壳的频散曲线,获得有价值结论。
作者信息 +

Spectral method for dispersion characteristics of cylindrical shell boarded with a damping layer

  • The wave equation of elastic theory is discretized by spectral method. Then the equation can be converted to a corresponding generalized eigenvalue problem by employing Chebyshev polynomials to be a primary function. After considering the boundary conditions at the fluid-structure interface and damping layer-structure interface, a generalized eigenvalue equation of a complex system can be obtained. The wave numbers for a given frequency are calculated by MATLAB eigenvalue solver. Then modal dispersion in elastic guiding structure can be solved quickly. This paper supplies the dispersion curves of cylindrical shells containing bare, fluid filled and layered. Some valuable conclusion has been given according to the dispersion curves.
Author information +
文章历史 +

摘要

以Chebyshev多项式系为基函数,采用谱方法离散弹性理论的波动方程,建立对应的广义特征值问题。依据壳体结构波运动、内部流体及外部阻尼材料在界面处的位移、应力连续条件,构造此复杂圆柱壳系统广义特征值方程。通过数值求解特征值获得对应频率下波数,进而获得圆柱壳结构的频散曲线。分别讨论充水与否、有阻尼负载圆柱壳的频散曲线,获得有价值结论。

Abstract

The wave equation of elastic theory is discretized by spectral method. Then the equation can be converted to a corresponding generalized eigenvalue problem by employing Chebyshev polynomials to be a primary function. After considering the boundary conditions at the fluid-structure interface and damping layer-structure interface, a generalized eigenvalue equation of a complex system can be obtained. The wave numbers for a given frequency are calculated by MATLAB eigenvalue solver. Then modal dispersion in elastic guiding structure can be solved quickly. This paper supplies the dispersion curves of cylindrical shells containing bare, fluid filled and layered. Some valuable conclusion has been given according to the dispersion curves.
 

关键词

谱方法 / 圆柱壳 / 频散特性 / 阻尼层

Key words

spectral method / cylindrical shel / dispersion characteristics / damping layer

引用本文

导出引用
王献忠1, 2 吴卫国1,2 庞福振3,孔祥韶1,2. 基于谱方法分析有阻尼负载圆柱壳频散特性[J]. 振动与冲击, 2015, 34(6): 13-17
WANG Xian-zhong1,2 WU Wei-guo1,2 PANG Fu-zhe3,KONG Xiang-shao1,2. Spectral method for dispersion characteristics of cylindrical shell boarded with a damping layer[J]. Journal of Vibration and Shock, 2015, 34(6): 13-17

参考文献

[1] Fay R D, Brown R L, Fortier O V. Measurement of acoustic impedances of surfaces in water[J]. Journal of the Acoustica Society of Americal, 1947, 19:850-856.
[2] Jacobi W J. Propagation of sound waves along liquid cylinders [J]. Journal of the Acoustical Society of America, 1949, 21:120-127.
[3] Biot M A. Propagation of elastic waves in a cylindrical bore containing a fluid [J]. Journal of Applied Physics,1952, 23:997-1005.
[4] Brevart B J, Fuller C R.  Effect of an internal flow on the distribution of vibrational energy in an infinite fluid-filled thin cylindrical elastic shell[J].Journal of Sound and Vibration, 1993, 167(1): 149- 163.
[5] Fuller C R, Fahy F J. Characteristic of wave propagation and energy distribution in cylindrical elastic shells filled with fluid[J].  Journal of Sound and Vibration,  1982, 81(4): 501-518.
[6] Gazis D C. Three dimensional investigation of the propagation of waves in hollow circular cylinders.I.analytical foundation[J]. Journal of Acoust. Soc. Am.,1959,31(5):568-573.
[7] Gazis D C.Three dimensional investigation of the propagation of waves in hollow circular cylinders.II.numerical results[J].Journal of Acoust. Soc. Am.,1959,31(5):574-578.
[8] Breitenbach E D,Uberall H,Yoo K B. Resonant acoustic scattering from elastic cylindrical shells [J]. Journal of Acoust. Soc. Am.,1983, 74(4): 1267 -1273.
[9] Maze G, Leon F, Ripoche J, et al. Repulsion phenomena in the phase-velocity dispersion curves of circumferential waves on elastic cylindrical shells[J]. Journal of Acoust.Soc. Am., 1999, 105(3): 1695-1701.
[10] Barshinger J N, Rose J L.Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material[J]. IEEE Transactions on Ultrasonics, ferroelectrics, and frequency Control,2004 ,51(11):1547-1556.
[11] Alleyne D N, Lowe M J S, Cawley P. The reflection of guided waves from circumferential notches in pipes [J]. Transactions of the ASME Journal of Applied Mechanics, 1998, 65: 635- 641.
[12] Kumar R. dispersion of axially symmetric waves in empty and fluid-filled cylinderical shells[J].Acustica,1972, 24(6):317-329.
[13] Kumar R. Flexural vibration of fluid-filled circular cylindrical shells[J]. Acoustica, 1971, 24:137-146.
[14] Lafleur L D, Shields F D. Low frequency propagation modes in a liquid-filled elastic tube wave-guide[J]. Journal of Acoustic Soc. Am., 1995, 97:1435-1445.
[15] Sinha B k, Plona T J, Kostek S, et al. Axisymmetric wave propagation in fluid-loaded cylindrical shells:I theory[J]. Journal of the Acoustical Society of America,1992,92(2):1132- 1143.
[16] Plona T J, Sinha B K, Kostec S,et al. Axisymmetric wave propagation in fluid-loaded cylindrical shells:Ⅱtheory[J]. Journal of the Acoustical Society of America,1992,92(2): 1144-1155.
[17] Karpfinger F,Valero H P,Gurevich B,et al. Spectral method for modeling dispersion of acoustic modes in elastic cylindrical structures [J] . Geophysics,2010, 75(3): 19-27.
[18] Karpfinger F, Gurevich B, Bakulin A. Modeling of axisymmetric wave modes in a poroelastic cylinder using spectral method[J].Journal of the Acoustical Society of America, 2008, 124(4): 230-235.
[19] Karpfinger F, Gurevich B, Bakulin A.  Computation of wave propagation along cylindrical structures using the spectral method [J]. The Journal of the Acoustical Society of America, 2008, 124(2):859-865.
[20] Weideman J A C, Reddy S C. A matlab differentiation matrix suite[J].ACM Trans. Math. Softw.,2000, 26:465-519.

PDF(1620 KB)

898

Accesses

0

Citation

Detail

段落导航
相关文章

/