针对钢材锈蚀会致结构过早失效、需对不同龄期结构进行抗震性能评估问题,提出基于首超变形及累积塑性转角的双参数构件损伤模型;考虑构件与层权重系数建立结构整体损伤模型,定义结构4种破坏状态。通过已有钢材锈蚀规律引入时间参数,建立钢材多龄期本构与钢框架全寿命地震易损性模型,以9层梁柱焊接钢框架为例,选20条满足场地条件的地震波,对不同龄期(0年、25年、50年、75年、100年)钢框架分别进行动力增量(IDA)分析,所得不同龄期结构整体损伤指数与地震动参数(峰值加速度)之间满足指数关系,给出5个龄期、4种性能水平下结构易损性曲线。通过二次曲线回归拟合不同性态水平下结构破坏时峰值加速度(PGA)平均值及对数标准差与龄期关系,建立结构随龄期变化的连续失效概率函数,获得结构失效概率随龄期变化规律。
Abstract
The seismic performance of structures at different ages was necessary to evaluate because corrosion of steel may lead structure to earlier failure. A double parameters of component damage model based on the first super deformation and cumulative plastic corner was puts forward to establish the overall structure damage model considering component and layer weight coefficient, where 4 kinds of damage state of the structure was defined. By introducing time parameter, the existing steel corrosion law of steel was used to establish age constitutive and whole-life seismic vulnerability model of the steel frame, with 9 floors of beam-column welded steel frame as an example, and 20 seismic wave meeting the site conditions was selected to get the relationship between the overall damage index of structure and the ground motion parameter (PGA) by IDA analysis of steel frame for different age (0 years, 25 years, 50 years, 75 and 100) respectively in order to obtain the structure fragility curves of 5 instars and 4 performance levels. The relationship between PGA average value and ages , PGA logarithmic standard deviation and ages getting by quadratic curve regression analysis were used to to establish the continuous function failure probability of structure with age changing, and then change rule of structural failure probability with changing age would be found.
关键词
钢框架 /
结构损伤模型 /
易损性分析 /
全寿命 /
锈蚀
{{custom_keyword}} /
Key words
steel frame /
structural damage model /
vulnerability analysis /
life-cycle /
corrosion
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Choe D E,Gardoni P,Rosowsky D,et al. Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion[J]. Reliability Enginee- ring System Safty,2008,93(3):383-393.
[2] 李吉涛,杨庆山,刘阳冰.多点地震激励下大跨连续钢构桥易损性分析[J].振动与冲击,2013,32(5):75-80.
LI Ji-tao, YANG Qing-shan, LIU Yang-bing. Fragility analysis of long span continuous rigid frame bridge under multi-support excitations[J].Journal of Vibration and Shock,2013,32(5):75-80.
[3] Park Y J,Ang A. Mechanistic seismic damage model forreinforced concrete[J]. Journal of Structural Engineering, 1985,111( 4) :740-756.
[4] Bojórquez E,Reyes-Salazar A. Energy-based damage index for steel structures [J]Steel and Composite Structures, 2010,10(4):343-360.
[5] Castiglionia C A, Pucinotti R. Failure criteria and cumulative damage models for steel components under cyclic loading[J].Journal of Constructional Steel Research, 2009, 65: 751-765.
[6] 杜修力,欧进萍.建筑结构地震破坏评估模型[J]. 世界地震工程, 1991, 7(3): 52-58.
DU Xiu-li,OU Jin-ping. Seismic damage evaluation model of building structures[J].World Earthquake Engineering, 1991,7(3):52-58.
[7] 史炜洲. 钢材腐蚀对住宅钢结构性能影响的研究与评估[D].上海:同济大学,2009.
[8] Lee H S,Noguchi T,Tomosawa F.FEM analysis for structure performance of deteriorated rc structures due to rebar corrosion[C].Prodceedings of the International Concrete under Several Conditions,1998.
[9] Cornell C A,Jalayer F, Hamburger R O,et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering,2002,128(4):526-533.
[10] Sucuoglu H, Yucemen S,Gezer A,et al. Statistical evaluation of the damage potential of earthquake ground motions[J]. Structural Safety,1999,20(4): 357-378.
[11] HAZUS99, user’s manual[S]. Washington D C: Federal Emergency Management Agency, l999.
[12] ATC-63, quantification of building seismic performance factors[S]. FEMA P695,2008.
[13] 刘新,时虎. 钢结构防腐蚀和防火涂装[M].北京:化学工业出版社,2005.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}