侧壁式压水室离心泵小流量非稳态旋转失速特性

张 宁,杨敏官,高 波,李 忠,王兴宁

振动与冲击 ›› 2015, Vol. 34 ›› Issue (6) : 189-194.

PDF(2540 KB)
PDF(2540 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (6) : 189-194.
论文

侧壁式压水室离心泵小流量非稳态旋转失速特性

  • 用数值计算方法研究具有特殊结构的侧壁式压水室离心泵,分析小流量工况时模型泵的非稳态旋转失速特性,用快速傅里叶变换(FFT)获得压力脉动信号的频谱特征。结果表明,小流量工况时模型泵的扬程曲线呈驼峰状,压水室不同位置处压力分布不均;受叶轮旋转产生的非稳态作用影响,叶轮不同叶片流道内流动结构差异较大。不同流量下,叶轮内部分离涡结构诱发的激励频率各异,0.4ФN工况时模型泵压力脉动频谱图出现0.5fR及高次谐波频率,压力脉动最大幅值出现于4fR频率处;0.2ФN流量时非定常流动结构会诱发0.18fR及高次谐波频率;0.05ФN流量时压力脉动频谱图同时出现0.1fR、0.28fR两种激励频率。旋转失速现象出现时,频谱图中叶频处压力脉动幅值不再起主导作用。
作者信息 +

Unsteady rotating stall characteristics in a centrifugal pump with slope volute at low flow rates

  • Numerical simulation method was used to analyze unsteady rotating stall characteristics in a centrifugal pump with slope volute at low flow rates. Fast Fourier Transform (FFT) was applied to transform time domain pressure signals to frequency domain signals. Results show that: hump phenomenon occurs in head curve of model pump, and pressure distribution at different position of slope volute is not uniform. Flow structure in each impeller channel differs, which is influenced by unsteady effect generated by rotating impeller. At different operating conditions pressure pulsation signals are different leading to variable excitation frequencies existing in pressure spectrum. Working at 0.4ФN condition, 0.5fR and its higher harmonics appear in pressure spectra, and pressure magnitude reaches maximum value at 4fR. At flow rate 0.2ФN, excitation frequencies 0.18fR and its harmonics occur. At 0.05ФN, two different excitation frequencies 0.1fR and 0.28fR appear in pressure spectra induced by unsteady flow structure in impeller channels. Pressure amplitude at blade passing frequency does not keep the predominant role in pressure spectra at rotating stall status.
Author information +
文章历史 +

摘要

用数值计算方法研究具有特殊结构的侧壁式压水室离心泵,分析小流量工况时模型泵的非稳态旋转失速特性,用快速傅里叶变换(FFT)获得压力脉动信号的频谱特征。结果表明,小流量工况时模型泵的扬程曲线呈驼峰状,压水室不同位置处压力分布不均;受叶轮旋转产生的非稳态作用影响,叶轮不同叶片流道内流动结构差异较大。不同流量下,叶轮内部分离涡结构诱发的激励频率各异,0.4ФN工况时模型泵压力脉动频谱图出现0.5fR及高次谐波频率,压力脉动最大幅值出现于4fR频率处;0.2ФN流量时非定常流动结构会诱发0.18fR及高次谐波频率;0.05ФN流量时压力脉动频谱图同时出现0.1fR、0.28fR两种激励频率。旋转失速现象出现时,频谱图中叶频处压力脉动幅值不再起主导作用。

Abstract

Numerical simulation method was used to analyze unsteady rotating stall characteristics in a centrifugal pump with slope volute at low flow rates. Fast Fourier Transform (FFT) was applied to transform time domain pressure signals to frequency domain signals. Results show that: hump phenomenon occurs in head curve of model pump, and pressure distribution at different position of slope volute is not uniform. Flow structure in each impeller channel differs, which is influenced by unsteady effect generated by rotating impeller. At different operating conditions pressure pulsation signals are different leading to variable excitation frequencies existing in pressure spectrum. Working at 0.4ФN condition, 0.5fR and its higher harmonics appear in pressure spectra, and pressure magnitude reaches maximum value at 4fR. At flow rate 0.2ФN, excitation frequencies 0.18fR and its harmonics occur. At 0.05ФN, two different excitation frequencies 0.1fR and 0.28fR appear in pressure spectra induced by unsteady flow structure in impeller channels. Pressure amplitude at blade passing frequency does not keep the predominant role in pressure spectra at rotating stall status.

关键词

离心泵 / 侧壁式压水室 / 旋转失速 / 数值计算 / 压力脉动 / 流场结构

Key words

centrifugal pump / slope volute;rotating stall / numerical simulation / pressure pulsation / flow structure

引用本文

导出引用
张 宁,杨敏官,高 波,李 忠,王兴宁. 侧壁式压水室离心泵小流量非稳态旋转失速特性[J]. 振动与冲击, 2015, 34(6): 189-194
ZHANG Ning,YANG Min-guan,GAO Bo,LI Zhong,WANG Xing-ning. Unsteady rotating stall characteristics in a centrifugal pump with slope volute at low flow rates[J]. Journal of Vibration and Shock, 2015, 34(6): 189-194

参考文献

[1]徐朝晖,吴玉林,陈乃祥,等.高速泵内三维非定常湍流激振计算[J].清华大学学报,2003,43(10): 1428-1431.
XU Zhao-hui, WU Yu-lin, CHEN Nai-xiang, et al. Impact of three-dimensional unsteady turbulence flow in high-speed pumps [J]. Journal of Tsinghua University (Sci. & Tech.),
2003,43(10):1428- 1431.
[2]吴大转,王乐勤,胡征宇. 离心泵快速启动过程的瞬态水力特性的数值模拟[J].浙江大学学报,2005,39(9): 1427-1430.
WU Da-zhuan, WANG Le-qin, HU Zheng-yu. Numerical simulation of centrifugal pump’s transient performance during rapid starting period[J]. Journal of Zhejiang University, 2005, 39(9): 1427-1430.
[3]杨军虎,吴俊辉,张人会.无过载离心泵内部流场的三维数值模拟[J].西华大学学报,2009,28(1):46-49.
YANG Jun-hu, WU Jun-hui,ZHANG Ren-hui. Three dimensional numerical simulation of the internal flow field with in a non-overload centrifugal pump[J].Journal of Xihua University, 2009,28(1):46-49.
[4] Ullum1 U, Wright J, Dayi O, et al. Prediction of rotating stall within an impeller of a centrifugal pump based on spectral analysis of pressure and velocity data[J]. Journal of Physics, 2006 52:36-45.
[5] Emmons H W, Kronauer R E, Rockett J A. A survey of stall propagation-experiment and theory[J]. ASME J. Basic Eng., 1959, 81: 409-416.
[6] Yoshida Y, Murakami Y, Tsurusaki T,et al. Rotating stalls in centrifugal impeller/vaned diffuser systems[C]. In Proceedings of the 1st ASME/JSME Joint Fluids Engineering Conference, Portland, Ore, USA,vol. FED-107, 1991:125-130.
[7] Lucius A, Brenner G. Numerical simulation and evaluation of velocity fluctuations during rotating stall of a centrifugal pump [J]. Journal of Fluids Engineering, 2011, 133(8): 081102.1- 081102.8.
[8] Sano T, Yoshida Y, Tsujimoto Y, et al. Numerical study of rotating stall in a pump vaned diffuser[J]. Journal of Fluids Engineering, 2002, 124: 363-370.
[9] Sinha M, Pinarbasi A, Katz J,et al. The Flow structure during onset and developed states of rotating stall within a vaned diffuser of a centrifugal pump[J]. Journal of Fluids Engineering, 2001,123:490-499.
[10]潘中永,李俊杰,李晓俊,等.斜流泵不稳定特性及旋转失速研究[J].农业机械学报,2012,43(5):64-68.
PAN Zhong-yong LI Jun-jie LI Xiao-jun,et al. Performance curve instability and rotating stall[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5): 64- 68.
[11]陈振,徐鉴. 轴流式压气机旋转失速和喘振的非线性反馈控制[J].振动与冲击,2013,32(4):106-110.
CHEN Zhen, XU Jian. Nonlinear feedback control for rotating stall and surge of an axial flow compressor[J].Journal of Vibration and Shock,2013,32(4):106-110. 
[12]郭强,朱晓程,杜朝辉,等.高速离心压缩机旋转失速的全流场数值模拟[J].机械工程学报,2009,45(6): 284-289.
GUO Qiang, ZHU Xiao-cheng,  DU Zhao-hui, et al. Numerical Simulation of rotating stall inside high speed centrifugal  compressor using entire geometry mesh[J]. Journal of Mechanical Engineering, 2009, 45(6):284-289.
[13]于巍巍,孙晓峰.跨音压气机/风扇旋转失速稳定性模型[J].航空动力学报,2005,20(6): 1018-1027.
YU Wei-wei, SUN Xiao-feng. Rotating stall stability theory of the transonic axial compressors/fans [J]. Journal of Aerospace Power, 2005, 20(6):1018-1027.
[14] Barrio R, Parrondo J, Blanco E. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points[J]. Computers & Fluids, 2010, 39(5):859-870.
[15] Krause N, Za¨hringer K, Pap E. Time-resolved particle image velocity for the investigation of rotating stall in a radial pump [J].Exp. Fluids, 2005, 39: 192-201.

PDF(2540 KB)

Accesses

Citation

Detail

段落导航
相关文章

/