高速铁路接触线气动参数仿真及风振响应研究

汪宏睿,刘志刚,宋 洋,姜 静

振动与冲击 ›› 2015, Vol. 34 ›› Issue (6) : 6-12.

PDF(2311 KB)
PDF(2311 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (6) : 6-12.
论文

高速铁路接触线气动参数仿真及风振响应研究

  • 为深入研究接触网系统在风载荷作用下接触线形成的风振响应,采用流体力学软件Fluent模拟计算形状不规则接触线截面的气动力参数,由其获得接触线与承力索的风载荷模型。在有限元软件MSC-Marc中建立京津城际铁路接触网整体模型,并利用MSC-Marc用户子程序功能实现接触网中接触线及承力索的风载荷动态输入,求解得接触线在不同风速、不同初始风攻角风载荷作用下产生的风振响应。结果表明,由于接触线的气动特性,任意风攻角风载荷作用下接触线竖直方向振动位移均值为负值,会加剧弓网间相互作用;接触线扭矩系数很小可忽略不计,接触线发生驰振原因之一为升力系数随攻角变化较大,在风攻角25º左右最可能发生驰振现象。
作者信息 +

A study on wind vibration response of contact line of high-speed railway

  • In order to study the wind vibration response of contact wire when the catenary system is under wind load, the aerodynamic parameters of contact wire with irregular section shape are calculated using CFD software—Fluent. The wind load models of contact wire and catenary are deduced based on their aerodynamic parameters. The finite element model of the catenary system is built by using MSC-MARC. Using the user subroutine of MSC-MARC, the dynamic input of the wind load is implemented. The vibration response of contact wire under wind loads with different wind speeds and attack angles are simulated. The result implies the mean displacements of contact wire vertical vibration under wind load of any attack angel considering its aerodynamic characteristics are negative. It intensifies the interaction between pantograph and contact wire. The torque coefficients of contact wire are small and can be ignored. The rapid change of lift coefficients of contact wire is one of the reasons causing contact wire galloping. The galloping of contact wire is more likely to occur at the wind attack angle of 25º.
Author information +
文章历史 +

摘要

为深入研究接触网系统在风载荷作用下接触线形成的风振响应,采用流体力学软件Fluent模拟计算形状不规则接触线截面的气动力参数,由其获得接触线与承力索的风载荷模型。在有限元软件MSC-Marc中建立京津城际铁路接触网整体模型,并利用MSC-Marc用户子程序功能实现接触网中接触线及承力索的风载荷动态输入,求解得接触线在不同风速、不同初始风攻角风载荷作用下产生的风振响应。结果表明,由于接触线的气动特性,任意风攻角风载荷作用下接触线竖直方向振动位移均值为负值,会加剧弓网间相互作用;接触线扭矩系数很小可忽略不计,接触线发生驰振原因之一为升力系数随攻角变化较大,在风攻角25º左右最可能发生驰振现象。

Abstract

In order to study the wind vibration response of contact wire when the catenary system is under wind load, the aerodynamic parameters of contact wire with irregular section shape are calculated using CFD software—Fluent. The wind load models of contact wire and catenary are deduced based on their aerodynamic parameters. The finite element model of the catenary system is built by using MSC-MARC. Using the user subroutine of MSC-MARC, the dynamic input of the wind load is implemented. The vibration response of contact wire under wind loads with different wind speeds and attack angles are simulated. The result implies the mean displacements of contact wire vertical vibration under wind load of any attack angel considering its aerodynamic characteristics are negative. It intensifies the interaction between pantograph and contact wire. The torque coefficients of contact wire are small and can be ignored. The rapid change of lift coefficients of contact wire is one of the reasons causing contact wire galloping. The galloping of contact wire is more likely to occur at the wind attack angle of 25º.

关键词

风载荷 / 风振响应 / 气动力参数 / 有限元 / 动态输入 / 驰振

Key words

wind load / wind vibration response / aerodynamic parameters / FEM / dynamic input / galloping

引用本文

导出引用
汪宏睿,刘志刚,宋 洋,姜 静. 高速铁路接触线气动参数仿真及风振响应研究[J]. 振动与冲击, 2015, 34(6): 6-12
WANG Hong-rui,LIU Zhi-gang,SONG Yang,JIANG Jing. A study on wind vibration response of contact line of high-speed railway[J]. Journal of Vibration and Shock, 2015, 34(6): 6-12

参考文献

[1]  吴积钦. 受电弓与接触网系统[M]. 成都:西南交通大学出版社,2010.
[2]  曹树森,柯坚,邓斌,等.强风地区接触网动力稳定性分析[J].中国铁道科学,2010, 31(4): 79-84.
CAO Shu-sen, KE Jian, DENG Bin ,et al. The dynamic stability analysis of the catenary systems in strong wind area[J].China Railway Science, 2010,31(4): 79-84.
[3]  赵飞,刘志刚,韩志伟.随机风场对弓网系统动态性
能影响研究[J].铁道学报,2012, 34(10): 36-42.
ZHAO Fei,LIU Zhi-gang,HAN Zhi-wei.Simulation study on influence of stochastic wind field to dynamic
behavior of pantograph-catenary system[J].Journal of the China Railway Society, 2012, 34(10): 36-42.
[4]  潘洪海. 基于ANSYS的接触线风偏计算[J]. 电气化铁道,2009, 5: 33-39.
    PAN Hong-hai. Calculation of wind deviation of contact wire based on ANSYS[J]. Electric Railway, 2009,5: 33-39.
[5]  韩佳栋,曹树森,刘晓红,等. 强风地区接触网风振响应分析[J].  铁道建筑技术,2010(S): 207-210.
HAN Jia-dong, CAO Shu-sen,LIU Xiao-hong,et al. Wind vibration response analysis of contact wire in the strong wind area[J]. Railway construction technology, 2010 (S): 207-210.
[6]  王少华. 基于Fluent的覆冰导线气动特性分析[J]. 高压电器,2012,48(1): 36-42.
WANG Shao-hua. Analysis of aerodynamic characteristics of iced conductor based on fluent[J]. High Voltage Apparatus, 2012,48(1): 36-42.
[7]  谢强,王巍,李海若. 高速铁路接触线气动力特性的风洞试验研究[J]. 中国铁道科学,2012,33(6): 75-82.
XIE Qiang, WANG Wei, LI Hai-ruo. Wind tunnel test on the aerodynamic characteristics of contact wire for high- speed railway[J]. China Railway Science, 2012, 33(6): 75-82.
[8]  曹化锦,李黎,姜维,等. 输电塔-线体系舞动仿真及控制研究[J]. 振动与冲击,2011,30(12): 245-249.
    CAO Hua-jin, LI Lin, JIANG Wei, et al. Simulation and control for galloping of a transmission tower-line system[J]. Journal of Vibration and Shock, 2011,30(12): 245-249.
[9]  孙振. 建筑结构风载荷的计算机模拟与分析[D]. 南京:南京航空航天大学, 2007.
[10]  周坤涛,郝淑英,刘君,等. 覆冰输电线结构及载荷对舞动的影响[J]. 振动与冲击,2012,31(1): 116-120.
ZHOU Kun-tao, HAO Shu-ying, LIU Jun, et al. Influence of conductor structure and loads on galloping of a transmission line[J]. Journal of Vibration and Shock, 2012, 31(1): 116-120.
[11] 赵莉,严波,蔡萌琦,等. 输电塔线体系中覆冰导线舞动数值模拟研究[J]. 振动与冲击,2013, 32(18): 113-120.
ZHAO Li, YAN Bo, CAI Meng-qi, et al. Numerical simulation for galloping of iced conductors in a transmission tower-line system[J]. Journal of Vibration and Shock, 2013, 32(18): 113-120.
[12] 孙珍茂,楼文娟. 覆冰输电导线舞动及防舞效果分析[J]. 振动与冲击,2010,29(5): 141-146.
    SUN Zhen-mao, LOU Wen-juan. Analysis of iced transmission line galloping and effect of anti-galloping[J]. Journal of Vibration and Shock, 2010,29(5): 141-146.
[13] Desai Y M, Shan A H, Popplewell N. Perturbation based finite element analyses of transmission line galloping[J]. Journal of Sound and Vibration, 1996, 191(4): 469-489.
[14] 吴燕,吴俊勇,郑积浩.高速受电弓-接触网系统动态受流性能的仿真分析[J].北京交通大学学报,2009,33(5):60- 63.
WU Yan, WU Jun-yong, ZHENG Ji-hao. A simulation study on current collection of high-speed pantograph- catenary[J]. Journal of Beijing Jiaotong University, 2009, 33(5): 60-63.
[15] 孙珍茂,楼文娟.覆冰输电导线舞动非线性有限元分析[J]. 电网技术,2010, 34(12): 214-218.
    SUN Zhen-mao, LOU Wen-juan. Nonlinear finite element analysis on galloping of ice-coated transmission line[J]. Power System Technology, 2010, 34(12): 214-218.

PDF(2311 KB)

Accesses

Citation

Detail

段落导航
相关文章

/