对2个高阻尼黏弹性阻尼器进行不同应变幅值、加载频率下的力学性能试验和疲劳性能试验,研究试件在不同工况下的最大剪应力、存储剪切模量、损耗剪切模量和等效黏滞阻尼比等力学性能及其变化规律,提出五单元模型模拟黏弹性阻尼器的滞回性能。研究结果表明:黏弹性阻尼器滞回曲线饱满、稳定,具有较高的等效黏滞阻尼比,表现出良好的变形性能和耗能能力;黏弹性阻尼器力学性能与应变幅值的相关性明显,与加载频率相关性较小,抗疲劳性能较好;五单元模型模拟的滞回曲线与试验滞回曲线吻合良好。
Abstract
This paper mainly presents an experimental study on two high damping viscoelastic dampers. Maximum shear stress, storage shear modulus, loss shear modulus and equivalent viscous damping ratio were measured under different loading schemes, to study the variation of the viscoelastic damper properties. Displacement control, frequency control and sinusoidal loading schemes were used. The mechanical properties of the damper for various strain amplitudes, loading frequencies were investigated. Fatigue test was also conducted. The non-linear hysteretic behavior of the viscoelastic damper was modeled to adopt the five unit model. The results show that the hysteresis curves of this kind of high damping viscoelastic dampers are full and stable. The equivalent viscous damping ratios of viscoelastic dampers are higher, and their deformation property, energy dissipation capacity and anti-fatigue property are good. The dependency of the damper’s mechanical properties on strain amplitude is relatively significant, while that on frequency is small The simulating hysteretic curves with five unit model are identical to the test results.
关键词
高阻尼 /
黏弹性阻尼器 /
力学性能 /
抗疲劳性能 /
五单元模型
{{custom_keyword}} /
Key words
high damping /
viscoelastic damper /
mechanical property /
anti-fatigue property /
five unit model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周云. 粘弹性阻尼减震结构设计[M]. 武汉: 武汉理工大学出版社, 2006.
[2] 周云. 结构风振控制的设计方法与应用[M]. 北京: 科学出版社, 2009.
[3] 周云. 耗能减震加固技术与设计方法[M]. 北京: 科学出版社, 2006.
[4] 王烨华, 周云, 丁鲲. 粘弹性阻尼减震结构研究与应用的新进展[J]. 防灾减灾工程学报, 2006, 26(1): 109-120. WANG Ye-hua, ZHOU Yun, DING Kun. Recent advances in research and applications of viscoelastically damped structure[J]. Journal of Disaster Prevention and Mitigation Engineering, 2006, 26(1): 109-120(in Chinese)
[5] 周云, 徐赵东, 邓雪松. 粘弹性阻尼器的性能试验研究[J]. 振动与冲击, 2001,21(3): 71-75.
ZHOU Yun, XU Zhao-dong, DENG Xue-song. Experimental study on properties of viscoelastic dampers[J]. Journal of Vibration and Shock, 2001, 20(3): 71-75(in Chinese)
[6] 谷翼, 辻聖晃, 竹脇出, 等. 高硬度ゴム粘弾性ダンパーによる建築物の居住性能の改善[C]// 日本建築学会大会学術講演梗概集, 関東, 2006: 801-802.
Tani T, Tsuji M, Takewaki I, et al. Habitability upgrade of buildings by visco-elastic damper using high-hardness rubber[C]// Summaries of technical papers of Annual Meeting Architectural Institute of Japan, Kanto, 2006:801-802(in Japanese)
[7] 谷翼, 辻聖晃, 吉富信太, 等. 高硬度ゴム粘弾性体の極微小変形から大変形までのひずみ•振動数依存性のモデル化: 高硬度ゴム粘弾性体の力学モデルの構築その1[C]. 日本建築学会構造系論文集, 2008,73(629): 1079-1086.
Tani T, Tsuji M, Yoshitomi S, et al. Strain and frequency dependence of high-hardness rubber in the range from very small up to large displacement: Mechanical model of high-hardness rubber Part 1 [C]// J. Struct. Constr. Eng., AIJ, 2008,73(629): 1079-1086(in Japanese)
[8] 日本隔震结构协会. 被动减震结构设计•施工手册[M]. 北京: 中国建筑工业出版社, 2008
[9] JG/T 209-2012建筑消能阻尼器[S].北京:中国标准出版社,2012
JG/T 209-2012 Dampers for Vibration Energy Dissipation of Buildings[S]. Beijing: China Standards Press, 2012(in Chinese).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}