[1] Roy S, Park Y C, Sause R,et al. Fatigue performance of stiffened pole-to-base plate socket connections in high-mast structures[J]. Journal of Structural Engineering-ASCE, 2012, 138(10): 1203-1213.
[2] Repetto M P, Solari G. Wind-induced fatigue collapse of real slender structures[J]. Engineering Structures, 2010, 32(12): 3888-3898.
[3] Jui-Sheng C, Wan-Ting T. Failure analysis and risk management of a collapsed large wind turbine tower[J]. Engineering Failure Analysis, 2011, 18(1): 295-313.
[4] 李爱群著. 工程结构减振控制[M]. 北京: 机械工业出版社, 2007.
[5] 唐意, 顾明. 某超高层建筑TMD风振控制分析[J]. 振动与冲击, 2006, 25(02): 16-19.
Tang Yi, Gu Ming. Analysis on control of wind induced vibration of a super-tall building with tmd[J]. Journal of Vibration and Shock, 2006, 25(02): 16-19. (in Chinese)
[6] 李春祥, 熊学玉. 高层钢结构TMDs风振舒适度控制最优参数与简化设计[J]. 振动与冲击, 2002, 21(2): 86-90.
Li Chunxiang, Xiong Xueyu. Optimum parameters and simplified design for wind_induced vibration comfort control on tall steel structure with tmds system[J]. Journal of Vibration and Shock, 21(2): 86-90. (in Chinese)
[7] Lu X L, Chen J R. Mitigation of wind-induced response of Shanghai Center Tower by tuned mass damper[J]. Structural Design of Tall and Special Buildings, 2011, 20(4SI): 435-452.
[8] Lu X L, Chen J R. Parameter optimization and structural design of tuned mass damper for Shanghai centre tower[J]. Structural Design of Tall and Special Buildings, 2011, 20(4SI): 453-471.
[9] Colwell B, Basu B. Tuned liquid column dampers in offshore wind turbines for structural control[J]. Engineering Structures, 2009, 31(2): 358-368.
[10] Brownjohn J, Carden E P, Goddard C R,et al. Real-time performance monitoring of tuned mass damper system for a 183 m reinforced concrete chimney[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(3): 169-179.
[11] 项海帆, 瞿伟廉. 高层建筑风振控制基于规范的实用设计方法[J]. 振动工程学报, 1999, 12(2): 151-156.
Xiang Haifan, Qu Weilian. Practical des ign m ethod based on des ign code for con troll ing w ind- induced vibration of tall buildings[J]. Journal of Vibration Engineering, 1999, 12(2): 151-156. (in Chinese)
[12] 瞿伟廉, 陶牟华, C C C. 五种被动动力减振器对高层建筑脉动风振反应控制的实用设计方法[J]. 建筑结构学报, 2001(02): 29-34.
Qu Weilian, Tao Muhua, C C CHANG. Practical design method for effect of five kinds of passive dynamic absorbers on fluctuation wind-induced vibration response control of tall buildings[J]. Journal of Building Structures, , 2001(02): 29-34. (in Chinese)
[13] 吕明云, 瞿伟廉. 非线性被动动力减振器对高耸结构风振控制的实用设计方法[J]. 振动与冲击, 2004, 23(1): 27-29.
Lu, Mingyun Qu Weilian. Practical method of designing nonlinear passive dynamic absorbers for wind-induced vibration control of highrise structure based on chinese code[J]. Journal of Vibration and Shock, 2004, 23(1): 27-29. (in Chinese)
[14] 李创第, 葛新广, 朱倍权. 带五种被动减振器的高层建筑基于Davenport谱随机风振响应的解析解法[J]. 工程力学, 2009(04): 144-152.
Li Chuangdi, Ge Xinguang, Zhu, Beiquan. Exact analytic method for random wind-induced response of tall building structures with five sorts of passive dampers on the basis of davenport spectrum[J]. Engineering Mechanics, 2009(04): 144-152. (in Chinese)
[15] 陈鑫. 高耸钢烟囱风振控制理论与试验研究[D]. 南京: 东南大学, 2012.
Chen Xin. Theoretical and experimental study on vibration control of high-rise steel chimneys under wind load[D]. Nanjing: Southeast University, 2012. (in Chinese)
[16] 黄镇, 李爱群, 刘康安等. 螺旋孔式粘滞阻尼器: 中国, CN101555922[P] 2009年10月14日.
[17] 李爱群, 黄镇, 刘康安等. 可控式粘滞阻尼器: 中国, CN101576139[P] 2009年11月11日.
[18] 陈鑫, 李爱群, 程文瀼等. 高耸结构动力特性分析的Adomian分解法[J]. 振动工程学报, 2013, 26(4): 493-499.
Chen Xin, Li Aiqun, Cheng Wenrang, et al. Study on dynamic characteristics of high-rise buildings based on Adomian decomposition method[J]. Journal of Vibration Engineering, 2013, 26(4): 493-499.(in Chinese)
[19] 陈鑫,李爱群,王泳等. 国内外自立式高耸结构等效风荷载及响应比较[J]. 建筑结构学报, 2014, 35(4): 304-311.
Chen Xin,Li Aiqun,Wang Yong, et al. Comparative study on equivelent wind loads and dynamic responses of self-standing high-rise structures in different codes[J]. Journal of Building Structures, 2014, 35(4): 304-311.(in Chinese)