基于等几何裁剪分析的拓扑与形状集成优化

傅晓锦1,龙 凯2,周利明1,阙春兰1,叶航1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (7) : 162-173.

PDF(3500 KB)
PDF(3500 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (7) : 162-173.
论文

基于等几何裁剪分析的拓扑与形状集成优化

  • 提出了将设计和分析、拓扑与形状优化集成的思想,探索了基于等几何裁剪分析的拓扑与形状集成优化设计算法,该方法统一了结构优化的计算机辅助设计、计算机辅助工程分析和优化设计的模型,基于B样条的等几何裁剪分析既能准确表达几何形状,又可以用裁剪面分析方便处理任意复杂拓扑优化问题,由裁剪选择标准确定合理的拓扑结构变动方向,结构变动时无需重新划分网格,设计结果突破初始设计空间的限制,还可方便优化形状。建立了等几何裁剪灵敏度分析的计算方法,给出了等几何裁剪分析拓扑与形状集成优化算法,通过典型实例表明所用方法的正确性和有效性。
作者信息 +

Integration of Topology and Shape Optimization Design of Continuum Structure Based on Isogeometric Trimmed Surface Analysis

  •  This paper presented an integration idea of computer aided design computer aided engineering analysis, topology and shape optimization design and then explored a kind of optimization strategy for integation of topology and shape optimization design of continuum structure based on isogeometric trimmed surface analysis.The proposed method unified the model of computer aided design, computer aided engineering and optimization design in structure optimization. Isogeometric trimmed surface analysis based on B splines not only expressed the geometry shape accurately, but also solved arbitrarily complex topology optimization problem. The trimmed criteria selected determined the reasonable direction of topology changes. It did not need to remesh during structural optimization process. The design results broke through the limitations of initial design space. It was also convenient in shape optimization. The integration method contained the calculation method for sensitivity analysis of isogeometric trimmed surface, and the algorithm for integation of topology and the shape optimization design based on isogeometric trimmed analysis. A numerical example illustrated the correctness and effectiveness of the method.
Author information +
文章历史 +

摘要

提出了将设计和分析、拓扑与形状优化集成的思想,探索了基于等几何裁剪分析的拓扑与形状集成优化设计算法,该方法统一了结构优化的计算机辅助设计、计算机辅助工程分析和优化设计的模型,基于B样条的等几何裁剪分析既能准确表达几何形状,又可以用裁剪面分析方便处理任意复杂拓扑优化问题,由裁剪选择标准确定合理的拓扑结构变动方向,结构变动时无需重新划分网格,设计结果突破初始设计空间的限制,还可方便优化形状。建立了等几何裁剪灵敏度分析的计算方法,给出了等几何裁剪分析拓扑与形状集成优化算法,通过典型实例表明所用方法的正确性和有效性。

Abstract

This paper presented an integration idea of computer aided design computer aided engineering analysis, topology and shape optimization design and then explored a kind of optimization strategy for integation of topology and shape optimization design of continuum structure based on isogeometric trimmed surface analysis.The proposed method unified the model of computer aided design, computer aided engineering and optimization design in structure optimization. Isogeometric trimmed surface analysis based on B splines not only expressed the geometry shape accurately, but also solved arbitrarily complex topology optimization problem. The trimmed criteria selected determined the reasonable direction of topology changes. It did not need to remesh during structural optimization process. The design results broke through the limitations of initial design space. It was also convenient in shape optimization. The integration method contained the calculation method for sensitivity analysis of isogeometric trimmed surface, and the algorithm for integation of topology and the shape optimization design based on isogeometric trimmed analysis. A numerical example illustrated the correctness and effectiveness of the method.

关键词

形状优化 / 灵敏度分析 / 拓扑优化 / 等几何分析 / 裁剪B样条 / 有限元分析

Key words

Shape optimization / Sensitivity analysis;Topology optimization;Isogeometric analysis;Trimmed B-spline;Finite element analysis

引用本文

导出引用
傅晓锦1,龙 凯2,周利明1,阙春兰1,叶航1 . 基于等几何裁剪分析的拓扑与形状集成优化[J]. 振动与冲击, 2015, 34(7): 162-173
Fu Xiaojin 1 Long Ka 2 Zhou Liming 1 Que Chunlan1 Ye Hang 1 . Integration of Topology and Shape Optimization Design of Continuum Structure Based on Isogeometric Trimmed Surface Analysis[J]. Journal of Vibration and Shock, 2015, 34(7): 162-173

参考文献

[1] Huang X, Xie Y M. Evolutionary Topology Optimization of Continuum Structures: Methods and Application[M]. London: Springer, 2010
[2] BendsoeM P,  Sigmund O. Topology Optimization: Theory, Methods, and Applications[M]. New York:Springer-Verlag, 2003.
[3] Qian X, Sigmund O.Isogeometric shape optimization of photonic crystals via Coons patches[J]. Computer Methods in Applied Mechanics and Engineering, 2011,200(25-28):2237-2255
[4] 程耿东,许林. 基于可靠度的结构优化的序列近似规划算法[J].计算力学学报,2006,23(6):641-646.
CHENG Gengdong, XU Lin.Sequential approximate programming approach to reliability based structural optimization[J].Chinese Journal of Computational Mechanics 2006,23(6):641-646
[5] Wang M Y, Wang X, Guo D. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227~246
[6] Uhm T -K, Kim K -S, Seo Y -D, et al. A locally refinable T-spline finite element method for CAD/CAE integration[J]. Structural Engineering and Mechanics, 2008,30(2):225–245
[7] Wall W A, Frenzel M A, Cyron C. Isogeometric structural shape optimization[J]. Computer Methods in Applied Mechanics and Engineering 2008,197(33-40): 2976–2988
[8] Dedè L, Borden M J, Hughes T J R.Isogeometric Analysis for Topology Optimization with a Phase Field Model[J].Archives of Computational Methods in Engineering,2012,19(3):427-465
[9] Hassani B, Khanzadi M, Tavakkoli S M.An isogeometrical approach to structural topology optimization by optimality criteria[J]. Structural and Multidisciplinary Optimization, 2012,45(2):223-233
[10] Lipton S, Evans J A, Bazilevs Y, et al. Robustness of isogeometric structural discretizations under severe mesh distortion[J]. Computer Methods in Applied Mechanics and Engineering 2010, 199(5-8): 357–373
[11] Hassani B, Tavakkoli S M, Moghadam N Z.Application of isogeometric analysis in structural shape optimization[J].Scientia Iranica.2011,18(4):846-852
[12] Hughes T J R, Cottrell J A, Bazilevs Y.Isogemetric analysis:CAD, finite element, NURBS,exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(39-41):4135-4195
[13] Cottrell J A, Reali A, Bazilevs Y, et al. Isogeometric analysis of structural vibrations[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43):5257–5296
[14] Auricchio F, Da Veiga L B, Hughes T J R, et al.Isogeometric collocation methods[J]. Mathematical Models and Methods in Applied Sciences, 2010, 20(11):2075–2107
[15] Bazilevs Y, Da Veiga L B, Cottrell J, et al. Isogeometric analysis: approximation, stability and error estimates for h-refined meshes[J]. Mathematical Models and Methods in Applied Sciences, 2006, 16(7):1031–1090
[16] Hughes T J R, Reali A, and Sangalli G. Efficient quadrature for NURBS based isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2010,199(5-8):301–313
[17] Hughes T J R, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[M], Dover Publications, Mineola, New York:2000
[18] Roh H Y, Cho M, Integration of geometric design and mechanical analysis using B-spline functions on surface[J]. International Journal for Numerical Methods in Engineering. 2005, 62(14):1927–1949
[19] Li K, Qian X. Isogeometric analysis and shape optimization via boundary integral[J].Computer Aided Design,2011,43(11):1427-1437
[20] Hesch C, Betsch P.Isogeometric analysis and domain decomposition methods[J].Computer Methods in Applied Mechanics and Engineering,2012,213-216:104-112
[21] Qian X, Full analytical sensitivities in NURBS based isogeometric shape optimization[J]. Computer Methods in Applied Mechanics and Engineering.2010, 199(29-32):2059–2071
[22] Seo Y D, Kim H J, Youn S K. Shape optimization and its extension to topological design based on isogeometric analysis[J]. International Journal of Solids and Structures. 2010, 47(11-12):1618–1640
[23] J. Cea, S. Garreau, P. Guillaume, et al. The shape and topological optimizations connection[J]. Computer Methods in Applied Mechanics and Engineering.2000,188(4):713–726.
[24] Manh N D, Evgrafov A, Gersborg A R,et al.Isogeometric shape optimization of vibrating membranes[J]. Computer Methods in Applied Mechanics and Engineering, 2011,200(13-16):1343-1353
[25] Navarrina F, Gómez H,París J,et al.Isogeometric shape sensitivity analysis[J].WIT Transactions on the Built Environment,2012,125:119-130
[26] Allaire G, Jouve F, Toader A M, Structural optimization using sensitivity analysis and a level set method[J]. Journal of Computational Physics. 2004,194(1):363–393
[27] 傅晓锦.连续体结构综合优化设计[J].机械工程学报,2012,48(1): 128-134.
FU Xiaojin. Integration Optimization Design of Continuum Structure[J].Chinese Journal of Mechanical Engineering, 2012,48(1): 128-134.
[28] 傅晓锦,卢炎麟.拓扑和形状集成优化设计[J].计算机集成制造系统,2008,14(6): 1041-1048.
FU Xiao-jin,LU Yan-lin. Integration of Topology and Shape Optimization[J].Computer Integrated Manufacturing Systems, 2008,14(6): 1041-1048.
[29] 施法中. 计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001.8.
SHI Fazhang. Computer-Aided Geometry Design and Non-uniform Rational B-spline(CAGD & NURBS)[M]. Beijing: Higher Education Press,2001.8.
[30] Piegl L, Tiller W, The NURBS Book (2nd Edition) [M], Springer-Verlag Berlin Heidelberg, Germany: 1997
[31] 朱心雄. 自由曲线曲面造型[M], 北京:科学出版社,2000.
ZHU Xinxlong.Free—form curve and suface modeling[M].Beijing:Science Press,2001.
[32] Cho S, Ha S H. Isogeometric shape design optimization: exact geometry and enhanced sensitivity[J]. Structural and Multidisciplinary Optimization. 2009, 38(1):53–70
[33] Choi K K, Kim N H. Structural Sensitivity Analysis and Optimization 2:Nonlinear Systems and Applications[M]. New York: Springer, 2005.

PDF(3500 KB)

843

Accesses

0

Citation

Detail

段落导航
相关文章

/