利用分数导数的本构关系建立了粘弹性拱的控制方程,采用Galerkin方法简化了拱的数学模型。提出一种求解含分数算子的非线性方程的数值方法,并利用该方法对控制方程进行求解。考察载荷参数、材料参数对拱动力响应的影响。运用非线性动力学中各种经典的分析方法,如时程曲线、功率谱、相图、庞加莱截面等,判别并揭示了粘弹性拱的丰富的动力学行为。
Abstract
The motion equation governing the dynamical behavior of a viscoelastic arch is derived. The viscoelastic material is assumed to obey fractional derivative constitutive relation. The motion equation is simplified by Galerkin method. An effective numerical method for solving nonlinear equations with fractional operator is developed and the motion equation governing the dynamical behavior of the viscoelastic arch is solved with the method. The influences of the load parameters and the material parameters on the dynamic response of arch are considered respectively. By using some classical methods in nonlinear dynamics, such as the time history curves, power spectrum, phase diagram, Poincare section, The complex dynamic behaviors of viscoelastic arch are discriminated and revealed in this paper.
关键词
分数导数 /
粘弹性拱 /
数值方法 /
相图 /
庞加莱截面
{{custom_keyword}} /
Key words
fractional derivative /
viscoelastic arch /
numerical method /
phase diagram /
Poincare section
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Proceedings of Fractional Differentiation and its Applications[A], 20d IFAC workshop on fractional differentiation and its applications[C], 19-21 July, 2006, Porto, Portugal;
[2]Nasuno H., Shimizu N. 2005. Nonlinear Statical and Dynamical Models of Fractional Derivative Viscoelastic Body [A]. 2005 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference [C]. Long Beach, California, USA
[3] 张卫等.分数导数及其在粘弹性理论中的应用.湖南大学学报(自然科学版,增刊) [J],2001年8月,第28卷,第4期:1-8.
ZHANG Wei etc. Fractional derivative and its application in viscoelastic theory. Journal of hunan university (natural science edition, supplement) [J], in August 2001, 28 (4) : 1-8.
[4] 张卫等.分数算子描述的粘弹性体力学问题数值方法.力学学报[J].Vo1.36,No.S, Sept,2004 617-621
ZHANG Wei, etc. Numerical methods of viscoelastic body mechanics problem described by fractional operator[J] Journal of mechanics. Vo1.36, No. S, Sept, 2004, 617-621
[5] 刘林超.分数导数型粘弹性材料的力学行为.暨南大学硕士学位论文[D].2005:1-6
LIU Lin-chao. Mechanical Behavior of Viscoelastic Materials with Fractional Derivative Model[D] . Master degree theses of jinan university. 2005:1-6
[6] 李根国.具有分数导数型本构关系的粘弹性结构的静、动力学行为分析[D].上海大学博士学位论文2001:2-3
LI Gen-guo. Quasi-static and Dynamical Analysis for Viscoelstic Structures with Fractional Derivative Constitutive Relation[D]. PhD dissertation, Shanghai university 2001:2-3
[7] 朱正佑等.具有分数导数本构关系的Timoshenko梁的静动力学行为分析[J].应用数学和力学,2002, Vo1.23,No.1.
ZHU Zheng-you, etc.Static and dynamic behavior analysis of the Timoshenko beam with fractional derivative constitutive relation [J]. Journal of applied mathematics and mechanics, 2002, Vo1.23, No. 1.
[8]Karnovsky I.A., Lebed O.I., 2004. Non-classical Vibrations of Arches and Beams [M], New York: McGraw-Hill.
[9] 邓一三等 扁拱结构的非线性振动分析,重庆工学院学报 2007
DENG Yi-san etc.Nonlinear vibration analysis of flat arch structure, journal of chongqing institute of technology, 2007
[10] 魏德敏 拱的非线性理论及其应用[M],北京:科学出版社,2004 6
WEI De-min nonlinear theory and application of arch[M], Beijing: science press, 2004 (6)
[11] 张伟等.非线性系统的周期振动和分岔[M].北京:科学出版社.2002: 2-3
ZHANG wei, etc. Periodic vibration and bifurcation of nonlinear systems[M]. Beijing: science press. 2002:2-3
[12] 方锦清.驾驭混沌与发展高新技术[M] 北京:原子能出版.2001. 12: 5-6
FANG Jin-qing. Chaos control and High-tech development [M]Beijing: atomic energy press. 2001. 12: 5-6
[13]王平,陈蜀梅,王知人.大挠度简支矩形薄板在热、力、磁耦合作用下的分岔与混沌[J].振动与冲击,2013,32(7):129-134.
WANG Ping, CHEN Shu-mei, WANG Zhi-ren.
Bifurcation and chaos of a thin rectangular plate simply supported with large deflection in a coupled environment of heating,force and magnetic field[J].Journal of Vibration and Shock, 2013,32(7):129-134.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}