黏弹性地基中基于虚土桩模型的桩顶纵向振动阻抗研究

吴文兵1,蒋国盛1,邓国栋2,谢邦华1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (7) : 192-198.

PDF(1774 KB)
PDF(1774 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (7) : 192-198.
论文

黏弹性地基中基于虚土桩模型的桩顶纵向振动阻抗研究

  • 基于虚土桩模型,对均质粘弹性地基中桩土纵向耦合振动问题进行了研究。首先,假定桩侧土为各向同性的线性粘弹性材料,并考虑土体的竖向波动效应,结合Euler-Bernoulli杆件理论,建立了桩土纵向耦合振动的定解问题;其次,采用分离变量法求解桩侧土纵向振动的控制方程,得到了桩侧土与桩身接触面上的剪切动刚度,将所得的剪切动刚度代入到桩身振动控制方程,采用Laplace变换技术,进一步求得了任意荷载作用下桩顶纵向振动阻抗的解析解。基于所得解,详细讨论了不同桩身设计参数时桩端土厚度对桩顶纵向振动阻抗的影响。最后,将虚土桩模型与其他桩端土支承模型进行了对比研究,结果表明,对虚土桩模型选用合适的材料参数和桩端土厚度,其得到的桩端支承复刚度值介于现有多种模型的计算值之间。
作者信息 +

Study on the vertical dynamic impedance of pile embedded in viscoelastic soil based on fictitious soil pile model

  • Based on fictitious soil pile model, the vertical dynamic response of pile embedded in homogeneous viscoelastic soil is investigated. Firstly, assuming the surrounding soil of pile to be isotropic viscoelastic material and considering its vertical wave effect, the definite problem of soil-pile system subjected to arbitrary dynamic force is established based on the Euler-Bernoulli rod theory. Secondly, the shear dynamic stiffness at the interface of soil and pile is derived by means of separation of variables to solve the governing equation of surrounding soil. Substituting the shear dynamic stiffness into governing equation of pile, the analytical solution of vertical dynamic impedance is derived by virtue of Laplace transform technique. Based on the obtained solution, the influence of depth of pile end soil on the vertical dynamic impedance is studied in detail for different designing parameters of pile. Lastly, fictitious soil pile model and other pile end soil supporting models are compared. It is shown that complex supporting stiffness calculated by fictitious soil pile model is among the supporting stiffness calculated by other existing models if there are appropriate material parameters and depth of pile end soil for the fictitious soil pile model.
Author information +
文章历史 +

摘要

基于虚土桩模型,对均质粘弹性地基中桩土纵向耦合振动问题进行了研究。首先,假定桩侧土为各向同性的线性粘弹性材料,并考虑土体的竖向波动效应,结合Euler-Bernoulli杆件理论,建立了桩土纵向耦合振动的定解问题;其次,采用分离变量法求解桩侧土纵向振动的控制方程,得到了桩侧土与桩身接触面上的剪切动刚度,将所得的剪切动刚度代入到桩身振动控制方程,采用Laplace变换技术,进一步求得了任意荷载作用下桩顶纵向振动阻抗的解析解。基于所得解,详细讨论了不同桩身设计参数时桩端土厚度对桩顶纵向振动阻抗的影响。最后,将虚土桩模型与其他桩端土支承模型进行了对比研究,结果表明,对虚土桩模型选用合适的材料参数和桩端土厚度,其得到的桩端支承复刚度值介于现有多种模型的计算值之间。

Abstract

Based on fictitious soil pile model, the vertical dynamic response of pile embedded in homogeneous viscoelastic soil is investigated. Firstly, assuming the surrounding soil of pile to be isotropic viscoelastic material and considering its vertical wave effect, the definite problem of soil-pile system subjected to arbitrary dynamic force is established based on the Euler-Bernoulli rod theory. Secondly, the shear dynamic stiffness at the interface of soil and pile is derived by means of separation of variables to solve the governing equation of surrounding soil. Substituting the shear dynamic stiffness into governing equation of pile, the analytical solution of vertical dynamic impedance is derived by virtue of Laplace transform technique. Based on the obtained solution, the influence of depth of pile end soil on the vertical dynamic impedance is studied in detail for different designing parameters of pile. Lastly, fictitious soil pile model and other pile end soil supporting models are compared. It is shown that complex supporting stiffness calculated by fictitious soil pile model is among the supporting stiffness calculated by other existing models if there are appropriate material parameters and depth of pile end soil for the fictitious soil pile model.

关键词

虚土桩模型 / 纵向振动阻抗 / 粘弹性地基 / 竖向波动效应 / Laplace变换 / 解析解

Key words

  / fictitious soil pile model;vertical dynamic impedance;viscoelastic soil;vertical wave effect;Laplace transform;analytical solution

引用本文

导出引用
吴文兵1,蒋国盛1,邓国栋2,谢邦华1. 黏弹性地基中基于虚土桩模型的桩顶纵向振动阻抗研究[J]. 振动与冲击, 2015, 34(7): 192-198
WU Wen-bing1, JIANG Guo-sheng1, DENG Guodong2, XIE Banghua1. Study on the vertical dynamic impedance of pile embedded in viscoelastic soil based on fictitious soil pile model[J]. Journal of Vibration and Shock, 2015, 34(7): 192-198

参考文献

[1] NOVAK M,BEREDUGO Y O. Vertical vibration of embedded footings[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98(SM12): 1291-1310.
[2] NOGAMI T,KONAGAI K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics, ASCE, 1986, 112(11): 1241-1252.
[3] 王奎华,谢康和,曾国熙. 有限长桩受迫振动问题解析解及其应用[J]. 岩土工程学报, 1997, 19(6):27-35.
WANG Kui-hua, XIE Kang-he, ZENG Guo-xi. Analytical solution to vibration of finite length pile under exciting force and its application[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(6):27-35.
[4] 孔德森, 栾茂田, 杨庆. 桩土相互作用分析中的动态Winkler模型研究评述[J]. 世界地震工程, 2005, 21(1): 12-17.
Kong Desen, Luan Maotian, Yang Qing. Review of dynamic Winkler model appfied in pile-soil interaction analyses[J]. World Earthquake Engineering, 2005, 21(1):12-17.
[5] 刘东甲. 指数型变截面桩中的纵波[J]. 岩土工程学报, 2008, 30(7):1066-1071.
Liu Dong-jia. Longitudinal waves in piles with exponentially varying cross sections[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7):1066-1071.
[6] Wang K H, Wu W B, Zhang Z Q, Chin J L. Vertical dynamic response of an inhomogeneous viscoelastic pile[J]. Computers and Geotechnics, 2010, 37(4): 536-544.
[7] Nogami T, Novak M. Soil-pile interaction in vertical vibration[J]. Earthquake Engineering and Structural Dynamics, 1976, 4:277-293.
[8] Veletsos A S, Dotsos K W. Vertical and torsional vibration of foundations in inhomogeneous media[J]. Journal of Geotechnical Engineering Division, ASCE, 1988, 114(9): 1002-1021.
[9] Militano G, Rajapakse R K N D. Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading[J]. Geotechnique, 1999, 49(1): 91-109.
[10] 王海东, 尚守平. 瑞利波作用下径向非匀质地基中的单桩竖向响应研究[J]. 振动工程学报, 2006, 19(2): 258-264.
Wang Hai-don, Shang Shou-ping. Research on vertical dynamic response of single-pile in radially inhomogeneous soil during passage of Rayleigh waves[J]. Journal of Vibration Engineering, 2006, 19(2): 258-264.
[11] 王奎华,杨冬英,张智卿. 基于复刚度传递多圈层平面应变模型的桩动力响应研究[J]. 岩石力学与工程学报,2008,27(4):825-831.
WANG Kuihua,YANG Dongying,ZHANG Zhiqing. Study on dynamic response of pile based on complex stiffness transfer model of radial multizone plane strain[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4):825-831.
[12] 吴文兵,王奎华,窦斌. 任意层地基中粘弹性楔形桩纵向振动响应研究[J].振动与冲击, 2013, 32(8): 120-127.
WU Wen-bing, WANG Kui-hua, DOU Bin. Vertical dynamic response of a viscoelastic tapered pile embedded in layered foundation[J].Journal of Vibration and Shock, 2013, 32(8): 120-127.
[13] Rajapakse R K N D, Chen Y, Senjuntichai T. Electroelastic field of a piezoelectric annular finite cylinder[J]. International Journal of Solids and Structures, 2005, 42(11/12): 3487-3508.
[14] Senjuntichai T, Mani S, Rajapakse R K N D. Vertical vibration of an embedded rigid foundation in a poroelastic soil[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(6/7): 626-636.
[15] Wang K H, Zhang Z Q, Chin J L, Xie K H. Dynamic torsional response of an end bearing pile in transversely isotropic saturated soil[J]. Journal of Sound and Vibration, 2009, 327(3): 440-453.
[16] 胡昌斌, 黄晓明. 成层粘弹性土中桩土耦合纵向振动时域响应研究[J]. 地震工程与工程振动, 2006,  26(4):205-211.
HU Chang-bin, HUANG Xiao-ming. A quasi-analytical solution to soil-pile interaction in longitudinal vibration in layered soils considering vertical wave effect on soils[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4):205-211.
[17] 刘林超, 闫启方, 杨骁. 分数导数粘弹性土层模型中桩基竖向振动特性研究[J]. 工程力学, 2011, 28(8): 177-182.
Liu Lin-chao, Yan Qi-fang, Yang Xiao. Vertical vibration of single pile in soil described by fractional derivative viscoelastic model[J]. Engineering Mechanics, 2011, 28(8): 177-182.
[18] Lysmer J, Richart FE. Dynamic response of footing to vertical load[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1966, 2(1):65-91.
[19] Novak M, Beredugo YO. Vertical vibration of embedded footings[J]. Journal of mechanics and foundation division, ASCE. 1972, 98(SM12):1291-1310.
[20] Liang R Y, Husein A I. Simplified dynamic method for pile-driving control[J]. Journal of geotechnical and geoenvironmental engineering, ASCE, 1993, 119(4):694-713.
[21] Meyerholf GG. Bearing capacity and settlement of pile foundations[J]. Journal of Geotechnical Engineering Division, ASCE, 1976, 102(GT3):195-228.
[22] 杨冬英,王奎华. 非均质土中基于虚土桩法的桩基纵向振动[J]. 浙江大学学报(工学版), 2010, 44(10): 2021-2028.
Yang Dongying, Wang Kuihua. Vertical vibration of pile based on fictitious soil-pile model in inhomogeneous soil [J]. Journal of Zhejiang University (Engineering Science), 2010, 44(10): 2021-2028.
[23] 吴文兵,王奎华,杨冬英,马少俊,马伯宁. 成层地基中基于虚土桩模型的桩基纵向振动响应[J]. 中国公路学报, 2012, 25(2): 72-80.
Wu Wen-bing, Wang Kui-hua, Yang Dong-ying, Ma Shao-jun, Ma Bo-ning. Longitudinal dynamic response to the pile embedded in layered soil based on fictitious soil pile model[J]. China Journal of Highway and Transport, 2012, 25(2): 72-80.
[24] 吴文兵,王奎华,张智卿,陈嘉熹. 半空间地基中虚土桩模型的精度分析及应用[J]. 应用基础与工程科学学报, 2012, 20(1): 121-129.
Wu Wen-bing, Wang Kui-hua, Zhang Zhi-qing, Chen Jia-xi. Accuracy and application of virtual soil pile model in half space foundation[J]. Journal of Basic Science and Engineering, 2012, 20(1): 121-129.

PDF(1774 KB)

Accesses

Citation

Detail

段落导航
相关文章

/