索杆梁耦合结构分析模型及其应用研究

刘云1,2,钱振东2,夏开全3,杨超舟1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (7) : 215-221.

PDF(1764 KB)
PDF(1764 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (7) : 215-221.
论文

索杆梁耦合结构分析模型及其应用研究

  • 为了研究索杆滑动连接特性对索杆梁耦合结构受力的影响,定义了由一个通过滑动节点连接的三节点活动滑移索单元和多个两节点非活动滑移索单元组成的单元组,基于更新拉格朗日法推导了三节点直线型滑索单元几何非线性刚度矩阵,并建立了输电线路索杆梁耦合结构有限元模型。通过高压架空输电线路耐张段的非线性静力调索分析验证了耦合结构模型的可行性,探讨了耦合结构在导线发生断裂失效后的动响应变化规律及其传播特性。计算结果表明,导线静态张力与规范设计参数相差较小,可用于后续分析。考虑滑移的导线张力在导线断裂初期有短暂增加的趋势。导线断裂对邻近绝缘子和铁塔横担杆件的受力有明显的影响,且动响应的传播会导致邻近塔的导线张力增加。
作者信息 +

Analysis model and its application of cable-rod-beam coupling structure

  • In order to study the gliding characteristics of lines on the tension forces of structural members in the cable-rod-beam coupling structure, a string of sliding cable element (SCE) consisting of one active three-node SCE passing through the “slider point” and multiple inactive two-node SCE is put forward. Based on updated lagrangian (U.L.) formulation, the geometric nonlinear stiffness matrix of 3-node straight sliding cable element was deduced. The finite element model of transmission line structure was established. Taking a high voltage overhead transmission line as an example, the initial equilibrium state of coupling system was determined by carrying out nonlinear static analysis, and the dynamic tension forces under cable rupture were calculated. The results show that the static tension force of lines can be used in the dynamic analysis according to the design parameters. The tension force of lines considering gliding characteristics just after cable rupture increases. The cable rupture has significant effect on the forces of insulators and towers, and the shock wave due to cable rupture could raise the forces of the adjacent conductors.
Author information +
文章历史 +

摘要

为了研究索杆滑动连接特性对索杆梁耦合结构受力的影响,定义了由一个通过滑动节点连接的三节点活动滑移索单元和多个两节点非活动滑移索单元组成的单元组,基于更新拉格朗日法推导了三节点直线型滑索单元几何非线性刚度矩阵,并建立了输电线路索杆梁耦合结构有限元模型。通过高压架空输电线路耐张段的非线性静力调索分析验证了耦合结构模型的可行性,探讨了耦合结构在导线发生断裂失效后的动响应变化规律及其传播特性。计算结果表明,导线静态张力与规范设计参数相差较小,可用于后续分析。考虑滑移的导线张力在导线断裂初期有短暂增加的趋势。导线断裂对邻近绝缘子和铁塔横担杆件的受力有明显的影响,且动响应的传播会导致邻近塔的导线张力增加。

Abstract

In order to study the gliding characteristics of lines on the tension forces of structural members in the cable-rod-beam coupling structure, a string of sliding cable element (SCE) consisting of one active three-node SCE passing through the “slider point” and multiple inactive two-node SCE is put forward. Based on updated lagrangian (U.L.) formulation, the geometric nonlinear stiffness matrix of 3-node straight sliding cable element was deduced. The finite element model of transmission line structure was established. Taking a high voltage overhead transmission line as an example, the initial equilibrium state of coupling system was determined by carrying out nonlinear static analysis, and the dynamic tension forces under cable rupture were calculated. The results show that the static tension force of lines can be used in the dynamic analysis according to the design parameters. The tension force of lines considering gliding characteristics just after cable rupture increases. The cable rupture has significant effect on the forces of insulators and towers, and the shock wave due to cable rupture could raise the forces of the adjacent conductors.

关键词

架空输电线路 / 索杆梁耦合结构 / 滑移索 / 几何非线性 / 动响应

Key words

overhead transmission line / cable-rod-beam coupling structure / gliding cable / geometric nonlinearity / dynamic response

引用本文

导出引用
刘云1,2,钱振东2,夏开全3,杨超舟1. 索杆梁耦合结构分析模型及其应用研究[J]. 振动与冲击, 2015, 34(7): 215-221
LIU Yun1, 2, QIAN Zhen-dong2, XIA Kai-quan3, YANG Chao-zhou1. Analysis model and its application of cable-rod-beam coupling structure[J]. Journal of Vibration and Shock, 2015, 34(7): 215-221

参考文献

[1] 陈水生,孙炳楠. 斜拉桥索-桥耦合非线性参数振动数值研究[J]. 土木工程学报,2003,36(4):70-75. CHEN Shui-sheng, SUN Bing-nan. Numerical study on nonlinear parametric vibration of coupled cables and bridge decks [J]. China Civil Engineering Journal, 2003, 36(4): 70-75.
[2] Vincenzo Gattulli, Massimiliano Morandini, Achille Paolone. A parametric analytical model for non-linear dynamics in cable-stayed beam [J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 1281-1300.
[3] 赵跃宇,蒋丽忠,王连华等. 索-梁组合结构的动力学建模理论及其内共振分析[J]. 土木工程学报,2004,37(3):69-72.
ZHAO Yue-ye, JIANG Li-zhong, WANG Lian-hua, et al. The dynamical modelling theory and internal resonance of cable-beam composite structure [J]. China Civil Engineering Journal, 2004, 37(3): 69-72.
[4] 赵跃宇,冯锐,杨相展等. 索-曲梁组合结构的面内振动[J]. 工程力学,2007,24(1):67-70.
ZHAO Yue-yu, FENG Rui, YANG Xiang-zhan, et al. In-plane vibration of the cable-stayed curved beam structure [J]. Engineering Mechanics, 2007, 24(1): 67-70.
[5] 夏开全,董石麟. 刚接与铰接混合连接杆系结构的几何非线性分析[J]. 计算力学学报,2001,18(1):103-107.
XIA Kai-quan, DONG Shi-lin. Geometrically nonlinear analysis of mixed frame structures with rigid and pinned joints [J]. Chinese Journal of Computational Mechanics, 2001, 18(1): 103-107.
[6] 梁枢果,朱继华,王力争. 大跨越输电塔-线体系动力特性分析[J]. 地震工程与工程振动,2003,23(6):63-69.
LIANG Shu-guo, ZHU Ji-hua, WANG Li-zheng. Analysis of dynamic characters of electrical transmission tower-line system with a big span [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(6): 63-69.
[7] 梁峰,李黎,尹鹏. 大跨越输电塔-线体系数值分析模型的研究[J]. 振动与冲击,2007,26(2):61-65.
LIANG Feng, LI Li, YIN Peng. Investigation on numerical model of electrical transmission tower-line system with a big span [J]. Journal of Vibration and Shock, 2007, 26(2): 61-65.
[8] 杨必峰,马人乐. 输电塔线体系的索杆混合有限元法[J]. 同济大学学报,2004,32(3):296-301.
YANG Bi-feng, MA Ren-le. Cable-strut mixed finite element method for transmission systems [J]. Journal of Tongji University, 2004, 32(3): 296-301.
[9] G. McClure, M. Lapointe. Modeling the structural dynamic response of overhead transmission lines [J]. Computers and Structures, 2003, 81: 825-834.
[10] N. Prasad Rao, G.M. Samuel Knight, N. Lakshmanan, et al. Investigation of transmission line tower failures [J]. Engineering Failure Analysis, 2010, 17: 1127-1141.
[11] A. Hamada, A.A. El Damatty. Behaviour of guyed transmission line structures under tornado wind loading [J]. Computers and Structures, 2011, 89: 986-1003.
[12] W.E. Lin, E. Savory, R.P. McIntyre, et al. The response of an overhead electrical power transmission line to two types of wind forcing [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 100: 58-69.
[13] Thai H T, Kim S E. Nonlinear static and dynamic analysis of cable structures [J]. Finite Elements in Analysis and Design, 2011, 47(3): 237-246.
[14] Green A E, Zerna W. Theoretical elasticity. Dover Publication Inc, New York, 1992.
[15] McClure G, Tinawi R. Mathematical modeling of the transient response of electric transmission lines due to conductor breakage [J]. Computers and Structures, 1987, 26(1): 41-56.
[16] 邓洪洲,朱松晔,陈亦等. 大跨越输电塔线体系风振控制研究[J]. 建筑结构学报,2003,24(4):60-64. DENG Hong-zhou, ZHU Song-ye, CHEN Yi, et al. Study on wind-induced vibration control of long span transmission line system [J]. Journal of Building Structures, 2003, 24(4): 60-64.
[17] Raid Karoumi. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges [J]. Computers and Structures, 1999, 71(4): 397-412.
[18] DL /T 5092-1999. 110~500 kV架空送电线路设计技术规程[S]. 北京:中国电力出版社,1999.

PDF(1764 KB)

989

Accesses

0

Citation

Detail

段落导航
相关文章

/