协方差驱动随机子空间的Toeplitz矩阵行数选择方法

王燕1,2,杭晓晨1,2,姜东1,2,韩晓林1,2,费庆国1,2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (7) : 71-75.

PDF(1248 KB)
PDF(1248 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (7) : 71-75.
论文

协方差驱动随机子空间的Toeplitz矩阵行数选择方法

  • 随机子空间识别算法是一种基于环境激励的模态参数识别方法,仅需要响应时程便可识别模态参数。其中,协方差驱动随机子空间方法中Toeplitz矩阵行数的选取直接影响识别精度。本文通过构造相关矩阵,研究了Toeplitz矩阵行数i对协方差驱动随机子空间方法中奇异值分解去噪能力的影响。引入Toeplitz矩阵条件数,根据i与Toeplitz矩阵条件数的关系再次证明了i对识别精度的影响。研究了Toeplitz矩阵行数i的选择方法。采用两自由度弹簧振子系统和切尖三角翼模型两个仿真算例研究了本文中Toeplitz矩阵行数i的选择方法。结果表明:在确定合适的系统阶数的前提下,Toeplitz矩阵的条件数越小识别精度越高。
作者信息 +

The Selection Method of Toeplitz Matrix Row Number Based on Covariance Driven Stochastic Subspace Identification

  • Stochastic Subspace Identification is a parameter identification method, which can effectively obtain modal parameters from the structural signal under ambient excitation. The choice of Toeplitz matrix row number directly influences the accuracy of identification. By constructing a correlation matrix, this paper derives the dimension of Toeplitz matrix influence the denoising ability ver SVD. The concept of condition number is introduced in solving the system matrix. according to the relationship between i and condition number of Toeplitz matrix, proving once again that i has influence on identification accuracy. Then researching the selection method of Toeplitz matrix row number i. Two simulations with two-degree spring vibration and a cropped delta wing model are used to research the method. The results show that after the determination of the suitable system order the smaller the Toeplitz matrix condition number is, the higher identification accuracy is.
Author information +
文章历史 +

摘要

随机子空间识别算法是一种基于环境激励的模态参数识别方法,仅需要响应时程便可识别模态参数。其中,协方差驱动随机子空间方法中Toeplitz矩阵行数的选取直接影响识别精度。本文通过构造相关矩阵,研究了Toeplitz矩阵行数i对协方差驱动随机子空间方法中奇异值分解去噪能力的影响。引入Toeplitz矩阵条件数,根据i与Toeplitz矩阵条件数的关系再次证明了i对识别精度的影响。研究了Toeplitz矩阵行数i的选择方法。采用两自由度弹簧振子系统和切尖三角翼模型两个仿真算例研究了本文中Toeplitz矩阵行数i的选择方法。结果表明:在确定合适的系统阶数的前提下,Toeplitz矩阵的条件数越小识别精度越高。

Abstract

Stochastic Subspace Identification is a parameter identification method, which can effectively obtain modal parameters from the structural signal under ambient excitation. The choice of Toeplitz matrix row number directly influences the accuracy of identification. By constructing a correlation matrix, this paper derives the dimension of Toeplitz matrix influence the denoising ability ver SVD. The concept of condition number is introduced in solving the system matrix. according to the relationship between i and condition number of Toeplitz matrix, proving once again that i has influence on identification accuracy. Then researching the selection method of Toeplitz matrix row number i. Two simulations with two-degree spring vibration and a cropped delta wing model are used to research the method. The results show that after the determination of the suitable system order the smaller the Toeplitz matrix condition number is, the higher identification accuracy is.

关键词

随机子空间方法 / 阻尼识别 / Toeplitz矩阵 / 条件数

Key words

stochastic subspace identification / damping identification / Toeplitz matrix / condition number

引用本文

导出引用
王燕1,2,杭晓晨1,2,姜东1,2,韩晓林1,2,费庆国1,2. 协方差驱动随机子空间的Toeplitz矩阵行数选择方法[J]. 振动与冲击, 2015, 34(7): 71-75
Wang Yan1, 2, Hang Xiaochen1, 2, Jiang Dong1, 2, Han Xiaolin1, 2, Fei Qingguo1, 2. The Selection Method of Toeplitz Matrix Row Number Based on Covariance Driven Stochastic Subspace Identification[J]. Journal of Vibration and Shock, 2015, 34(7): 71-75

参考文献

[1]. 辛峻峰, 王树青, 刘福顺. 数据驱动与协方差驱动随机子空间法差异化分析[J]. 振动与冲击, 2013, 9: 001.
Xin Junfeng, Wang Shuqing, Liu Fushun. Performance comparison for data-driven and covariance-driven stochastic
subspace identification method.[J]. Journal of Vibration and Shock, 2013, 9:001.
[2]. Boonyapinyo V, Janesupasaeree T. Data-driven stochastic subspace identification of flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12): 784-799.
[3]. 李永军, 马立元, 王天辉, 等. 协方差驱动子空间模态参数辨识方法改进分析[J]. 中国机械工程, 2012, 23(013): 1533-1536.
Li Yongjun, Ma Liyuan, Wang Tianhui, et al. An Improvement on Subspace Modal Parameter Identification Algorithm Driven by Covariance[J]. China Mechanical Engineering, 2012, 23(013):1533-1536.
[4]. Van Overschee P, De Moor B. Subspace identification for linear systems: theory, implementation, applications. dordrecht, Netherlands: Kluwer Academic Publishers, 1996.
[5]. Van Overschee P, De Moor B. Subspace algorithms for the stochastic identification problem. Proceedings of the 30th IEEE Conference on Decision and Control, pages 1321-1326,Brighton,UK,1991
[6]. Van Overschee P, De Moor B. Subspace algorithms for the stochastic identification problem[J]. Automatica, 1993, 29(3): 649-660.
[7]. 陈爱林,张令弥.基于随机子空间方法的模态参数识别研究(英文)[J].Chinese Journal of Aeronautics,2001(4):222-228.
Chen Ailin, Zhang Lingmi. Study of Stochastic Subspace System Identification Method[J]. Chinese Journal of Aeronautics,2001(4):222-228.
[8]. 刘东霞. 基于随机子空间法的梁桥模态参数识别 [D]. 成都: 西南交通大学, 2008.
Liu Dongxia. Modal parameter identification of a bridge based on Stochastic Subspace Identification[D]. Chengdu: Southwest Jiaotong University, 2008
[9]. 辛峻峰, 盛进路, 张永波. 数据驱动随机子空间法矩阵维数选择与噪声问题研究[J]. 振动与冲击, 2013, 32(16): 152-157.
Xin Junfeng, Sheng Jinlu, Zhang Yongbo. Relation between noise and matrix dimension of data-driven stochastic subspace identification method[J]. Journal of Vibration and Shock, 2013, 32(16):152-157.
[10]. 樊江玲. 基于输出响应的模态参数辨识方法研究 [D]. 上海交通大学, 2007.
Fan Jiangling. Study on the Output Based Modal Parameter Identification [D]. Shanghai Jiao Tong University, 2007.
[11]. Hong A L, Ubertini F, Betti R. New Stochastic Subspace Approach for System Identification and Its Application to Long-Span Bridges[J]. Journal of Engineering Mechanics, 2012, 139(6): 724-736.
[12]. Loh C H, Liu Y C, Ni Y Q. SSA-based stochastic subspace identification of structures from output-only vibration measurements[J]. Smart Structures and Systems, 2012, 10(4-5): 331-351.
[13]. 张波, 李健君. 基于 Hankel 矩阵与奇异值分解 (SVD) 的滤波方法以及在飞机颤振试验数据预处理中的应用[J]. 振动与冲击, 2009, 28(2): 162-166.
Zhang Bo, Li Jianjun. Denoising method based on Hankel matrix and SVD and its application in flight flutter testing data preprocessing[J]. Journal of Vibration and Shock, 2009, 28(2):162-166.
[14]. 易大义, 陈道琦. 数值分析引论[M]. 浙江大学出版社, 1998, 9.

PDF(1248 KB)

1370

Accesses

0

Citation

Detail

段落导航
相关文章

/