摘要
为解决总体平均经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)中虚假IMF分量过多问题,提出了一种基于频率截止的EEMD方法。该方法采用一种新的IMF筛分终止条件——以信号自身的最小频率为EMD分解IMF分量的截止频率;然后将基于频率截止的IMF筛分终止条件引入EEMD分解。通过仿真和实测信号分析,并与EMD、EEMD分解结果比较得到,运用频率截止的EEMD方法不仅有效减少了虚假IMF分量的产生,使得分解的目的性更加明确,而且保证了EEMD分解出的IMF分量的完备性,更好地抑制了模态混叠现象。
Abstract
In order to solve the problem of excessive false IMF components in ensemble empirical mode decomposition(EEMD), an improved EEMD method based on cut-off frequency is proposed in this paper. This method adopts a new screening termination conditions of IMF,which takes the minimum frequency of signal itself as the cut-off frequency when processed by EMD. Then the screening termination conditions of IMF based on cut-off frequency is introduced to the EEMD.Compared with EMD and EEMD, the false IMF components reduce more effectively and mode mixing phenomenon is well inhibited by EEMD based on cut-off frequency in the analysis of the simulation and measured signals. The IMF components are complete and the purpose of decomposition is more clear in EEMD based on cut-off frequency.
关键词
总体平均经验模态分解 /
频率截止 /
模态混叠 /
IMF分量
{{custom_keyword}} /
Key words
Ensemble empirical mode decomposition /
Cut-off frequency /
Mode mixing /
IMF components
{{custom_keyword}} /
黄杰 张梅军 柴凯 陈灏.
基于频率截止的EEMD方法研究[J]. 振动与冲击, 2015, 34(8): 101-105
HUANG Jie,ZHANG Mei-jun,CHAI Kai,CHEN Hao.
The Research of EEMD based on Cut-off Frequency[J]. Journal of Vibration and Shock, 2015, 34(8): 101-105
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 程军圣,于德介,杨宇.经典模态分解方法中内禀模态函数判据问题研究[J].中国机械工程,2004,15(20):1861-1864.
Cheng Jun-sheng,Yu De-jie,Yang Yu.Research on The Criterion Problem of Intrinsic Mode Function by Empirical Mode Decomposition[J].China Mechanical Engineering,2004,15(20):1861-1864.
[2] Wu Zhaohua,Huang Norden E.Ensemble empirical mode decompositio:A noise-assisted data analysis method[J] .Advances in Adaptive Data Analysis,2008,1(1): 1-41.
[3] 胥保春,袁慎芳.IMF筛选停止条件的分析及新的停止条件[J].振动、测试与诊断,2011, 31(3): 348-352.
Xu Bao-chun,Yuan Shen-fang,The Analysis of IMF’s Screening Stop Condition and A New Stop Condition[J] .Journal of Vibration,Measurement & Diagnosis,2011, 31(3): 348-352.
[4] Huang N E,Zhen Shen,Long S R,et a.The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[J].Proceedings of the Royal Society of London,1998,454:903-995.
[5] Huang N E,Zhen Shen,Long S R.A new view of nonlinear water waves:the Hilbert spectrum[J]. Annual Review of Fluid Mechanics,1999,31:417-457.
[6] Rilling G,Flandrin P.On empirical mode decomposition and its algorithms[C]// IEEE-EUBASIP Workshop on Nonlinear Signal and Image Processing(NSIP2003), Grado, Italy:[s.n.], 2003.
[7] 胡劲松,杨世锡.基于能量的振动信号经验模态分解终止条件[J].振动、测试与诊断,2009,29(1)::19-22.
Hu Jing-song ,Yang Shi-xi .The Termination Condition of Empirical Mode Decomposition Based on Energy of Vibration Signal[J] .Journal of Vibration,Measurement & Diagnosis,2009,29(1)::19-22.
[8] 雷亚国.基于改进Hilbert-Huang变换的机械故障诊断[J].机械工程学报, 2011,47(5): 71-77.
Lei Ya-guo.Machinery Fault Diagnosis Based on Improved Hilbert-Huang Transform [J].Chinese Journal of Mechanical Engineering,2011,47(5):71-77.
[9] 齐天,裘焱,吴亚锋.利用聚合经验模态分解抑制振信
号中的模态混叠[J].噪声振动与控制,2010(4):103-106.
Qi Tian,Qiu Yan,Wu Ya-Feng.The Suppression of Mode Mixing in The Ensemble Empirical Mode Decomposition of Vibration Signal[J] Noise and Vibration Control,2010(4):103-106.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}