非高斯脉动风压对围护结构及局部结构构件有较大影响,在设计中应引起足够重视。目前,非高斯风压场的分区研究主要是建立在对实验数据的统计量分析基础上,并非普遍适用,且随机性较强,区内统计特征值亦相差很大,不足以显示不同区域的非高斯程度,故须结合其形成机理加以分析。考虑到在特定风场条件下分离流动及旋涡作用范围具有时均定常的特点,利用稳态数值方法求解的极限流线和粘性流动分离理论的基本结论,结合实验结果分析了典型屋盖结构脉动风压非高斯特性的形成和分布机理。结果表明,极限流线的分布形态与实验统计的偏度及峰态值分布高度相关,可以被很好地应用于风压场非高斯特性的生成及分布机理研究。
Abstract
The non-Gaussian fluctuating wind pressure greatly affects the building envelope and some local structural elements, it should be paid attention in the design. Currently, the identification of the non-Gaussian wind pressure field is mainly based on the statistical analysis of the measurement data, but it can not find its application universally. Besides, the method is highly random and the characteristic values in the non-Gaussian area are totally different, so it can not show the non-Gaussian distribution extent in different areas, to overcome it the mechanism of non-Gaussian property should also be considered. Considering that under certain wind field, it is time-averaged stationary for the flow separation and the vortex action sphere, the limiting streamline solved by steady CFD and the basic conclusions of viscous flow separation theory are used here, combined with the experimental results, to analyze the mechanism of formation and distribution of the non-Gaussian properties for typical roof structures. The results show that the distribution pattern of the limiting streamline is highly relevant to the distribution of skewness and kurtosis calculated from the experimental results, which can be reasonably applied on the analysis of the formation and distribution mechanism of the non-Gaussian properties.
关键词
屋盖结构 /
脉动风压 /
非高斯特性 /
极限流线 /
粘性流动分离理论
{{custom_keyword}} /
Key words
roof structures /
fluctuating wind pressure /
non-Gaussian property /
limiting streamline /
viscous flow separation theory
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Peterka JA, Cermak JE. Wind pressures on buildings-probability densities[J]. Journal of Structual Division, 1975, 101(6): 1255-1267.
[2] Holmes JD. Wind action on glass and Brown's integral[J]. Engineering Structures, 1985, 7(4): 226-230.
[3] Kumar KS, Stathopoulos T. Wind loads on low building roofs: a stochastic perspective[J]. Journal of Structural Engineering, 2000, 126(8): 944-956.
[4] 孙瑛.大跨屋盖结构风荷载特性研究[D].哈尔滨工业大学,2007.
Sun Y. Characteristics of wind loading on long-span roofs[D]. Harbin Institute of Technology, 2007.
[5] 韩宁, 顾明. 方形高层建筑风压脉动非高斯特性分析[J]. 同济大学学报(自然科学版), 2012, 40(7): 971-976.
Han N, Gu M. Analysis on non-Gaussian features of fluctuating wind pressure on square tall buildings[J]. Journal of Tongji University(Natural Science), 2012, 40(7): 971-976.
[6] 叶继红, 侯信真.大跨屋盖脉动风压的非高斯特性研究[J].振动与冲击, 2010, 29(7): 9-15.
Ye JH, Hou XZ. Non-Gaussian features of fluctuating wind pressure on long-span roofs[J]. Journal of Vibration and Shock, 2010, 29(7): 9-15.
[7] 王莺歌,李正农,吴红华,等. 低矮房屋屋面脉动风压的预测[J]. 振动与冲击,2013, 32(5): 157-162.
Wang YG, Li ZN, Wu HH, et al. Prediction of fluctuating wind pressure on low building's roof[J]. Journal of Vibration and Shock, 2013, 32(5): 157-162.
[8] 董欣, 叶继红. 锥形涡及其诱导下的马鞍屋盖表面风荷载[J]. 振动与冲击, 2010, 29(10): 61-70.
Dong X, Ye JH. Conical vortex and its induced wind load on a saddle roof[J]. Journal of Vibration and Shock, 2010, 29(10): 61-70.
[9] Tobak M, Peake DJ. Topology of three-dimensional separated flows[R]. USA: NASA Technical Memorandum 81294, 1981.
[10] 张涵信.三维定常粘性流动的分离条件及分离线附近流动的性状[J].空气动力学学报, 1985, 1: 1-12.
Zhang HX. The separation criteria and flow behavior for three dimentional steady separated flow[J]. Acta Aerodynamic Sinica, 1985, 1: 1-12.
[11] 张涵信.分离流与旋涡运动的结构分析[M]. 北京: 国防工业出版社, 2002.
Zhang HX. A structural analysis on separation flow and vortex movement[M]. Beijing: State Defense Industry Press, 2002.
[12] 张涵信, 张树海, 田浩, 等. 三维可压缩非定常流的壁面分离判据及其分离线附近的流动形态[J].空气动力学学报, 2012, 30(4): 421-430.
Zhang HX, Zhang SH, Tian H, et al. Separation on fixed surface for three dimensional compressible unsteady flows[J]. Acta Aerodynamic Sinica, 2012, 30(4): 421-430.
[13] 黄本才, 汪丛军.结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2008.
Huang BC, Wang CJ. The principles and applications of the wind resistance analysis for structures[M]. Shanghai: Tongji University Press, 2008.
[14] Michalski A, Kermel PD, Haug E, Löhner R, Wüchner R, Bletzinger K U. Validation of the computational fluid–structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99: 400-413.
[15] Ho TCE, Surry D, Morrish D. NIST/TTU cooperative agreement-windstorm mitigation initiative: wind tunnel experiments on generic low buildings[R]. Canada: The Boundary Layer Wind Tunnel Laboratory, University of Western Ontario, 2003.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}