冲击条件下相关性竞争失效过程的系统可靠性建模

常春波1,2,曾建潮2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (8) : 203-208.

PDF(1344 KB)
PDF(1344 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (8) : 203-208.
论文

冲击条件下相关性竞争失效过程的系统可靠性建模

  • 常春波1,2,曾建潮2
作者信息 +

Reliability modeling for dependent competing failure processes subject to  -shock

  • CHANG Chun-bo 1,2   ZENG Jian-chao 2 
Author information +
文章历史 +

摘要

研究系统受到 冲击时,考虑系统自然退化和冲击两个竞争性失效过程间具有相关性时,系统可靠性的建模问题。相关性一方面表现为冲击造成系统退化量的增加,另一方面表现为系统的自然退化程度对冲击结果的影响。假设系统因冲击而失效的过程是 冲击过程,通过系统自然退化过程和冲击过程的分布函数,导出了系统的可靠度函数,建立了系统可靠度模型的一般形式,并给出一种特例的具体形式,最后利用文献中的具体参数进行仿真,以验证模型的正确性和有效性。

Abstract

The system reliability modeling was studied, considering the correlation between two s-dependent competing failure processes including degradation and shock when system subject to  -shock. On the one hand, shock process causes the additional abrupt degradation; on the other hand the degradation of the system impacts the result of the shock process. Assume that the system is subject to  -shock process, based on the distribution functions of the system natural degradation process and the shock process, the system's reliability function is derived. The general form of the system's reliability model is presented and one of specific form is given. Finally the simulation is preformed using parameters in the literature. And simulation results show the correctness and validity of the models.

关键词

竞争性失效 / 冲击 / 可靠性 / 相关性

Key words

competing failure processes;  / -shock process / reliability / dependent

引用本文

导出引用
常春波1,2,曾建潮2. 冲击条件下相关性竞争失效过程的系统可靠性建模[J]. 振动与冲击, 2015, 34(8): 203-208
CHANG Chun-bo 1,2 ZENG Jian-chao 2 . Reliability modeling for dependent competing failure processes subject to  -shock[J]. Journal of Vibration and Shock, 2015, 34(8): 203-208

参考文献

[1] 赵建印, 基于性能退化数据的可靠性建模与应用研究[D], 国防科学技术大学, 2005.
Zhao J Y, Study on reliability modeling and applications based on performance degradation[D], National University of Defense Technology, 2005.
[2] Lu C J, Meeker W O. Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35(2): 161-174.
[3]Singpurwalla N D. Survival in dynamic environments[J]. Statistical Science, 1995, 10(1): 86-103.
[4]Kharoufeh J P, Cox S M. Stochastic models for degradation-based reliability[J]. IIE Transactions, 2005, 37(6): 533-542.
[5] Nakagawa T. Shock and damage models in reliability theory[M]. Springer, 2007.
[6 Liu Y, Huang H Z, Pham H. Reliability evaluation of systems with degradation and random shocks[C], Reliability and Maintainability Symposium, 2008. RAMS 2008. Annual. IEEE, 2008: 328-333.
[7] Chien Y H, Sheu S H, Zhang Z G, et al. An extended optimal replacement model of systems subject to shocks [J]. European Journal of Operational Research, 2006, 175(1): 399-412.
[8] Bai J M, Li Z H, Kong X B. Generalized shock models based on a cluster point process[J]. IEEE Transactions on Reliability, 2006, 55(3): 542-550.
[9] Ye Z S, Tang L C, Xu H Y. A distribution-based systems reliability model under extreme shocks and natural degradation [J]., IEEE Transactions on Reliability, 2011, 60(1): 246-256.
[10] Wang* G J, Zhang Y L. A shock model with two-type failures and optimal replacement policy[J]. International Journal of Systems Science, 2005, 36(4): 209-214.
[11] Li W, Pham H. An inspection-maintenance model for systems with multiple competing processes[J]. IEEE Transactions on Reliability, 2005, 54(2): 318-327.
[12] Li W, Pham H. Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[J]. IEEE Transactions on Reliability, 2005, 54(2): 297-303.
[13]Wang Z, Huang H Z, Li Y, et al. An approach to reliability assessment under degradation and shock process[J]. IEEE Transactions on Reliability, 2011, 60(4): 852-863.
[14]H. Peng, Q. M. Feng, and D. W. Coit, “Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes,” IIE Transactions, vol. 43, pp. 12–22, 2011
[15] Jiang L, Feng Q, Coit D W. Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds [J]. IEEE Transactions on Reliability, 2012, 61(4): 932-948.
[16]苏春, 瞿众洲, 郝会兵. 考虑相关竞争故障过程及变动阈值的可靠性评估[J]. 东南大学学报(英文版), 2013, 29(1), 52-56.
Su C, Qu Z Z, Hao H B. Reliability assessment considering dependent competing failure process and shifting-threshold[J].
Journal of Southeast University(English Edition), 2013, 29(1): 52-56.
[17]Li, Z.H., Kong, X.B., 2007. Life behavior of δ-shock model. Statist. Probab. Lett. 77, 577-587.
[18]Li, Z.H., Zhao, P., 2007. Reliability analysis on the δ-shock model of complex systems. IEEE Trans. Reliab. 56, 340-348.
[19 Eryılmaz S. Generalized δ-shock model via runs[J]. Statistics & Probability Letters, 2012, 82(2): 326-331.
[20] Lam Y, Zhang Y L. A geometric-process maintenance model for a deteriorating system under a random environment[J]. Reliability, IEEE Transactions on, 2003, 52(1): 83-89.
[21] 张卓奎, 陈慧婵. 随机过程. 西安: 西安电子科技大学出版社, 2003.
Zhang Z K, Chen H C. Stochastic Process. Xi'an: Xidian University Publishing House, 2003.
[22]吴赣昌, 概率论与数理统计(理工类•第四版). 北京: 中国人民大学出版社, 2011年.
Wu G C, Probability and Statistics(Science and Engineering•The Fourth Edition). Beijing: China Renmin University Press, 2011.

PDF(1344 KB)

705

Accesses

0

Citation

Detail

段落导航
相关文章

/