圆球倾斜入水冲击压力特征的实验研究

闫发锁,孙丽萍,张大刚,王玮

振动与冲击 ›› 2015, Vol. 34 ›› Issue (8) : 214-218.

PDF(1576 KB)
PDF(1576 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (8) : 214-218.
论文

圆球倾斜入水冲击压力特征的实验研究

  • 闫发锁,孙丽萍,张大刚,王玮
作者信息 +

EXPERIMENTAL STUDY ON THE CHARACTERISTICS OF PRESSURE FROM OBLIQUE WATER IMPACT OF A SPHERE

  • YAN Fasuo     SUN Linping     ZHANG Dagang    WANG Wei
Author information +
文章历史 +

摘要

本文通过相关的理论和试验对比研究了圆球倾斜入水冲击压力的性质,解释了冲击压力的振荡现象。试验以一个直径15.24cm的圆球为对象,设计了控制球体倾斜入水的“单摆”装置,同步记录了圆球入水初期的流场状态和表面压力。采用Faltinsen的近似公式对比了入水初期压力载荷的变化,用理想不可压流体中气泡的非线性振动方程解释了冲击压力下降阶段出现的振荡性质。理论和试验对比表明:圆球的倾斜入水与垂直入水相比,迎撞面压力峰值大,下降迅速;背撞面压力峰值显著减小,压力下降平稳缓慢;所用的近似公式在量级上可以估算冲击的设计载荷,Rayleigh方程可用来有效解释含气泡冲击的压力振荡性质。

Abstract

Characteristics of impacting pressure during the initial stage of a sphere water entry is studied based on a series of model tests. A pendulum instrument is set up for a 6-inch diameter sphere impacting into calm water obliquely. Water splash and sphere’s surface pressure were recorded synchronously. The peak pressure rises up sharply and is much higher value in the aggressive area than that in reverse side. Time series of pressure during small submergences is compared with the Faltisen’s theory formula. It is shown that the formula is able to evaluate design loads at small penetration depth. The nonlinear Rayleigh equation for a spherical gas bubble in an ideal incompressible fluid is adaptive to predict approximate oscillation periods.

关键词

圆球砰击 / 倾斜入水 / 峰值压力 / 压力振荡

Key words

sphere slamming / oblique water entry / peak pressure / pressure oscillation

引用本文

导出引用
闫发锁,孙丽萍,张大刚,王玮. 圆球倾斜入水冲击压力特征的实验研究[J]. 振动与冲击, 2015, 34(8): 214-218
YAN Fasuo SUN Linping ZHANG Dagang WANG Wei. EXPERIMENTAL STUDY ON THE CHARACTERISTICS OF PRESSURE FROM OBLIQUE WATER IMPACT OF A SPHERE[J]. Journal of Vibration and Shock, 2015, 34(8): 214-218

参考文献

[1] Worthington A M. A Study of Splashes.London: Longmans, 1908.
[2] 闫发锁. 计及结构弹性效应的砰击载荷与响应[D]. 哈尔滨:哈尔滨工程大学, 2009.
YAN Fa-suo. Slamming load and response study including structural elasticity effects[D]. Harbin: Harbin Engineering University. 2009.
[3] Backer GD, Vantorre M, Beels C, et al. Experimental investigation of water impact on axisymmetric bodies[J]. Applied Ocean Research. 2009, 31:143-156.
[4] Adrian C. Malki Alaoui AE, Neme A et al. Numerical and expenrimental study of simple geometry in slamming[J]. Int. J of Offshore and Polar Eng. 2011, 21(3):216-22
[5] Trusscott TT, Alexandra HT. Water entry of spinning spheres[J]. J. Fluid Mech.  2009, 000:1-31
[6] 闫发锁,赵九龙, 张钧等. 圆球倾斜入水初期压力分布的试验测试[J]. 天津大学学报:自然科学与工程技术版,2014(已录用).
YAN Fa-suo, ZHAO Jiu-long, Niedzwecki J, et al. An experimental testing on the initial pressure distribution of a sphere in oblique water entry. Journal of Tianjin University: Science and Technology. 2014(in Press).
[7] 李鹏松.理想不可压流体中气泡非线性振动周期的解析逼近.东北电力大学学报: 自然科学版,2006, 26(6):48-51.
Li Peng-song. Approx imate Analytical Periods to Oscillations of a spherical gas bubble in an ideal incompressible fluid. Journal Of Northeast Dianli University: Natural Science Edition. 2006, 26(6):48-51.
[8] 王诗平,孙士丽,张阿漫等. 可压缩流场中气泡脉动数值模拟.力学学报,2012, 40(3):513-519.
WANG Shi-ping, SUN Shi-li, ZHANG A-man, et al. Numerical Simulation of  Bubble Dynamics in Compressible Fluid. Chinese journal of theoretical and applied mechanics. 2012, 40(3):513-519.
[9] Faltinsen O, Zhao R. Water entry of ship sections and axisymmetric bodies. InAGARD FDP and Ukraine institute of hydromechanics workshop on high speedbody motion in water. 1971.

PDF(1576 KB)

982

Accesses

0

Citation

Detail

段落导航
相关文章

/