针对圆柱壳内动力装置的减振降噪问题,建立由动力装置振源、隔振支承及圆柱壳基础组成的自适应前馈控制主被动混合隔振系统模型。在频域分析中引入剪断算法及泄漏算法以计及作动器的输出约束。考虑被动弹性支承的分布参数特性,以输入到圆柱壳基础的总功率最小、径向力最小及径向速度最小为控制策略,运用子结构导纳法推导总体系统的动态特性传递矩阵方程。研究表明:两种算法均能收到良好的主动控制力约束效果,并可有效抑制最小化径向力及最小化径向速度策略下的“功率循环”现象发生。采用径向速度最小化策略会改变壳体基础的边界条件配置,使得功率流谱中基础模态峰值右移。外扰引起的被动隔振器纵向及弯曲谐振使得高频域系统功率流谱中个别峰值峭立突出,成为诱发高频声辐射的关键模态,应严格限制。旨在为下一步的试验工作及实际应用提供理论指导。
Abstract
To deal with the vibra-acoustic problem about power machinery mounted in a cylinder, the adaptive feedforward passive-active vibration isolation model which consists of complex excitations, isolators, and a circular cylindrical shell foundation was established. In frequency domain analysis, output clipping algorithm and leaky algorithm were introduced to consider the output constraint of actuators. Minimization of the total power transmitted to the shell foundation had been compared with two more practical control strategies: the cancellation of radial forces and the cancellation of radial velocities. The coupled vibration transfer equations of the overall system were derived by the substructure mobility approach. Numerical simulation shows that: two algorithms can both receive good active control constraint effects, and can both effectively restrain the phenomenon of power circulation. Using the radial velocities cancellation strategy will change the boundary condition of the shell foundation and result in shell modal peaks moving to higher frequencies. With consideration of the distributed parameter characteristic of passive isolators, the system power spectrum shows some prominent peaks which are the principal acoustic radiation modes at high frequency domain. It can provide theoretical guidance for further experiments and practical applications.
关键词
作动器约束 /
自适应前馈控制 /
主动隔振 /
圆柱壳体
{{custom_keyword}} /
Key words
actuator output constraints /
adaptive feedforward control /
active vibration isolation /
cylindrical shell
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Hansen C H, Snyder S D, Qiu xiaojun, et al. Active control of noise and vibration[M]. Boca Raton: CRC press, 2012.
[2] Howard C Q, Hansen C H, Pan Jiaqiang. Power transmission from a vibrating body to a circular cylindrical shell through passive and active isolators[J]. Journal of the Acoustical Society of America, 1997, 101(3): 1479-1497.
[3] Liu X, Jin G, Wang Y, et al. Active control of a machine suspension system supported on a cylindrical shell[J]. Journal of Computational Acoustics, 2013, 21(3): 1-19.
[4] Ma Xianglong, Jin Guoyong, Liu Zhigang. Active structural acoustic control of an elastic cylindrical shell coupled to a two-stage vibration isolation system[J]. International Journal of Mechanical Sciences,2014,79: 182-194.
[5] Elliott S J, Baek K H. Effort constraints in adaptive feedforward control[J]. IEEE Signal Processing Letters, 1996,3(1):7-9.
[6] Qiu xiaojun, Hansen C H. A study of time-domain FXLMS algorithms with control output constraint[J]. Journal of the Acoustical Society of America, 2001, 109(6): 2815-2823.
[7] 尹建民,周雅莉,张奇志,等. 考虑约束的频域算法在有源噪声控制中的应用[J]. 噪声与振动控制,2004,6(3):18-21.
YIN Jian-min, ZHOU Ya-li, ZHANG Qi-zhi, et al. An efficient frequency-domain LMS algorithm with constraints on the active noise control[J].Noise and Vibration Control, 2004, 6(3): 18-21.
[8] Fuller C R, Elliott S J and Nelson P A. Active control of vibration[M]. London: Academic Press,1997.
[9] 张志谊,王俊芳,谌勇,等. 主动隔振与声辐射控制中的饱和抑制[J]. 振动与冲击,2009,28(5):27-31.
ZHANG Zhi-yi, Wang Jun-fang, CHEN Yong, et al. Saturation alleviation in active vibration isolation and sound radiation control[J]. Journal of Vibration and Shock, 2009,28(5):27-31.
[10] 陈昊,王永,李嘉全,等. 基于饱和约束LMS算法的磁悬浮隔振器控制研究[J]. 振动与冲击,2012,31(13):125-128.
CHEN Hao, Wang Yong, Li Jia-quan, et al. Control of electromagnetic suspension vibration isolator based on LMS algorithm with saturation constraint[J]. Journal of Vibration and Shock, 2012,31(13):125-128.
[11] Beijers C. A modeling approach to hybrid isolation of structure-borne sound[D]. Enschede: University of Twente, 2005.
[12] 孙玲玲. 复杂激励多维耦合系统传递矩阵与主被动控制研究[D]. 济南:山东大学,2004.
SUN Ling-ling. Transfer matrix model of complex coupled system for passive and active vibration control[D]. Jinan: Shandong University, 2004.
[13] Sun L, Leung A Y T, Lee Y Y, et al. Vibrational power-flow analysis of a MIMO system using the transmission matrix approach[J].Mechanical Systems and Signal Processing, 2007,21(1):365-388.
[14] 王晓乐,孙玲玲,高阳,等. 两端剪力薄膜支撑圆柱壳体的点导纳特性[J].振动与冲击,2014,待刊出.
WANG Xiao-le, SUN Ling-ling, GAO Yang, et al. The point mobility of circular cylindrical shells with both ends shear diaphragms supported[J]. Journal of Vibration and Shock, 2014, In Press.
[15] Gardonio P, Elliott S J, Pinnington R J. Active isolation of structural vibration on a multiple-degree-of-freedom system, Part II: effectiveness of active control strategies[J]. Journal of Sound and Vibration, 1997, 207(1):95-121.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}