具有刚度非线性的结构系统阻尼参数测试

李 晖1,孙 伟1,刘 营1,韩清凯2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (9) : 131-135.

PDF(1335 KB)
PDF(1335 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (9) : 131-135.
论文

具有刚度非线性的结构系统阻尼参数测试

  • 李  晖1,孙  伟1,刘 营1,韩清凯2
作者信息 +

Damping Identification for the Stiffness Nonlinear Structure

  • Li Hui1, Sun Wei1, Liu Ying1, Han Qing-kai2
Author information +
文章历史 +

摘要

机械结构系统中存在大量的结构,其固有频率会随着激振力幅的不同而改变,称之为刚度非线性结构,例如螺栓法兰联接结构、涂层复合结构等。由于存在刚度非线性,经典的半功率带宽法无法准确辨识这些结构的阻尼参数。本文在修正经典半功率带宽法的基础上,提出了一种适用于弱刚度及强刚度非线性系统的阻尼辨识方法,称为频域带宽法。首先,基于刚度非线性结构系统的运动方程,分别推导了弱刚度非线性及强刚度非线性系统的阻尼辨识公式。进一步,提出了基于频域带宽法测试具有刚度非线性结构系统的阻尼参数的方法及流程,并讨论了扫频方向、扫频速度对测试结果的影响。最后,以具有软式非线性特征的硬涂层薄板为对象进行实例研究,获得了该薄板不同激励幅度下的阻尼参数。本文的研究可为精确建立类似结构的动力学响应分析模型提供参考。

Abstract

There are a large number of structures, their natural frequencies will vary with the exciting levels and can be named as the stiffness nonlinear structures, such as the bolted joint structure, composite laminated plate structure, etc. Due to the effect of stiffness-nonlinear, the classical time domain and frequency domain methods of damping test will not be suitable to these structures. Therefore, on the basis of modified the classical half-power bandwidth method, this paper presented a method used to identify damping of the weak and strong stiffness-nonlinear structure systems. Based on the movement equation of the stiffness-nonlinear system, damping identifying formulas were derived respectively for the weak and strong stiffness-nonlinear structure systems. Then, damping test procedure was proposed for the above mentioned nonlinear structure systems. At last, a test case has demonstrated the practicability and effectiveness of this method, which was applied on damping test of a hard-coating cantilever thin plate with soft nonlinear characteristic and damping parameters were obtained under different exciting levels by sweep test.

关键词

刚度非线性 / 结构系统 / 阻尼测试 / 测试流程 / 频域带宽法

Key words

stiffness-nonlinear / structure system / damping test / test procedure / frequency bandwidth method

引用本文

导出引用
李 晖1,孙 伟1,刘 营1,韩清凯2. 具有刚度非线性的结构系统阻尼参数测试[J]. 振动与冲击, 2015, 34(9): 131-135
Li Hui1, Sun Wei1, Liu Ying1, Han Qing-kai2. Damping Identification for the Stiffness Nonlinear Structure[J]. Journal of Vibration and Shock, 2015, 34(9): 131-135

参考文献

[1] 尹帮辉,王敏庆,吴晓东.结构振动阻尼测试的衰减法研究[J].振动与冲击,2014,33(4):100-106.
YIN Bang-hui, WANG Min-qing, WU Xiao-dong. Decay method for measuring structural vibration damping[J].Journal of Vibration and Shock,2014,33(4):100-106. 
[2] Blackwell C, Palazotto A, George TJ, et al. The evaluation of the damping characteristics of a hard coating on titanium[J]. Shock and Vibration, 2007,14(1): 37-51.
[3] Argatov II, Butcher EA. On the Iwan models for lap-type bolted joints[J]. International Journal of Non-Linear Mechanics, 2011,46(2): 347-356.
[4] Ohta H, Tanaka K. Vertical Stiffnesses of Preloaded Linear Guideway Type Ball Bearings Incorporating the Flexibility of the Carriage and Rail[J]. Journal of tribology, 2010,132(1):1-9.
[5] Ian T. Pearson, J. Toby Mottram. A finite element modelling methodology for the non-linear stiffness evaluation of adhesively bonded single lap-joints: Part 1. Evaluation of key parameters[J]. Computers and Structures 2012, 90–91: 76-88.
[6] Ribeiro P, Akhavan H. Non-linear vibrations of variable stiffness composite laminated plates[J]. Composite Structures, 2012, 94(8): 2424–2432.
[7] Reed SA, Palazotto AN, Baker WP. An experimental technique for the evaluation of strain dependent material properties of hard coatings[J]. Shock and Vibration, 2008,15(6): 697-712.
[8] Patsias S, Saxton C, Shipton M. Hard damping coatings: an experimental procedure for extraction of damping characteristics and modulus of elasticity[J]. Materials Science and Engineering, 2004,370(1): 412-416.
[9] Torvik PJ. On estimating system damping from frequency response bandwidths[J]. Journal of Sound and Vibration, 2011,330(25): 6088-6097.

PDF(1335 KB)

Accesses

Citation

Detail

段落导航
相关文章

/