根据机械系统与电气系统的相似方法,将叠堆型压电驱动器的非线性电-机械耦合模型完全转换到电气域内,建立了其非线性相似电路模型;给出了非线性相似电路模型中迟滞因子的辨识方法,并对某款商用叠堆型压电驱动器进行了迟滞因子的辨识试验;基于非线性相似电路模型和迟滞因子的辨识结果,对该款叠堆型压电驱动器的非线性特性进行了仿真分析,得到了其非线性位移迟滞回线;仿真结果与试验结果吻合,证明了该建模过程与辨识方法的正确性。该建模方法在电气域内对叠堆型压电驱动器电-机械耦合特性及非线性迟滞特性进行描述,建模过程物理意义清晰且简单实用,对于研究压电驱动器的动态特性及控制算法具有实际意义。
Abstract
According to the similarity method of mechanical system and electrical system, a nonlinear circuit model of stack-type piezoelectric actuator is established by transforming its electromechanical coupling model to electrical domain. The identification method of hysteresis factor in the nonlinear circuit model is given out and the identification experiment for a commercial stack-type piezoelectric actuator is carried out. Based on the established nonlinear circuit model and the identified hysteresis factor, the nonlinear dynamic characteristics of the piezoelectric actuator are simulated. The simulated hysteresis curve agrees well with the experiment result which verifies the theory. The proposed modeling method describes the electromechanical coupling characteristic and nonlinear hysteresis characteristic of stack-type piezoelectric actuator in electrical domain, which makes the modeling have obvious physical sense. Therefore, this paper has practical significance to study the dynamic characteristics and control algorithm of stack-type piezoelectric actuator.
关键词
叠堆型压电驱动器 /
非线性建模 /
迟滞因子 /
系统相似方法
{{custom_keyword}} /
Key words
stack-type piezoelectric actuator /
nonlinear modeling /
hysteresis factor /
system similarity method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Jiao Z, Chen P, Hua Q, et al. Adaptive vibration active control of fluid pressure pulsations [J]. Proceeding of the Institution of Mechanical Engineers, Part I: Journal of System and Control Engineering, 2003, 217: 311−318.
[2] Anderson E H, Evert M E, Flannery P, et al. Image stabilization testbed (ISTAT) [C]. SPIE conference on technologies for synthetic environment: hardware-in-the-loop testing VI, Orlando, FL, 16 April 2001, paper no.4366−24.
[3] Matticari G, Noci G E, Siciliano P. Cold gas micro propulsion prototype for very fine spacecraft attitude/position control [C]. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, USA, 2006, pp. 5378-5390.
[4] Chopra I. Review of state of art of smart structures and integrated systerns [J]. AIAA Joumal, 2002, 40(11): 2145−2187.
[5] 吴博达, 鄂世举, 杨志刚, 等. 压电驱动与控制技术的发展与应用 [J]. 机械工程学报, 2003, 39(10):79−85.
WU Bo-da, E Shi-ju, YANG Zhi-gang, et al. Development and application of piezoelectric actuation and control [J]. Chinese Journal of Mechanical Engineering, 2003, 39(10):79−85.
[6] 赵淳生. 超声电机技术与应用 [M]. 北京: 科学出版社, 2007.
ZHAO Chun-sheng. Ultrasonic Motors Technologies and Applications [M]. Beijing: Science Press, 2007.
[7] Liang C, Sun F P, Rogers C A. An impedance method for dynamic analysis of active materials systems [J]. Journal of intelligent material systems and structures, 1997, 8: 718−732.
[8] 李国清, 胡元太, 胡鹏, 等. 相似电路耦合模型及其在压电-梁结构分析中的应用 [J]. 固体力学学报, 1999, 20 (4): 343−348.
LI Guo-qing, HU Yuan-tai, HU Peng, et al. A simulative circuit model for intelligent structures and its application to a smart beam with PZT actuator [J]. Acta Mechanica Solida Sinica, 1999, 20 (4): 343−348.
[9] Ge P, Jouaneh M. Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators [J]. Precision Engineering, 1997, 20(2): 99−111.
[10] Stepanenko Y, Su C Y. Intelligent control of piezoelectric actuators [C]. 37th IEEE Conference on Decision and Control, Victoria University, BC, 1998: 4234−4239.
[11] Goldfarb M, Celanovic N. A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators [J]. Journal of dynamic systems, measurement, and control, 1997, (119): 478−485.
[12] Schäfer J, Janocha H. Compensation of hysteresis in solid-state actuators [J]. Sensors and Actuators A: Physical, 1995, 49(1): 97−102.
[13] Adriaens H, De Koning W L, Banning R. Modeling piezoelectric actuators [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(4): 331−341.
[14] Cheng D K. Analysis of linear systems [M]. New Jersey: Addison-Wesley, 1959.
[15] Mayer D, Atzrodt H, Herold S, et al. An approach for the model based monitoring of piezoelectric actuators [J]. Computers & structures, 2008, 86(3): 314-321
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}