基于高速摄影实验的小提琴琴弦三维振动特性研究

张承忠1,2 叶邦彦1 梁立东1 胡习之1 赵学智1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (9) : 177-181.

PDF(1883 KB)
PDF(1883 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (9) : 177-181.
论文

基于高速摄影实验的小提琴琴弦三维振动特性研究

  • 张承忠1,2  叶邦彦1  梁立东1  胡习之1 赵学智1
作者信息 +

Study on 3D Vibration Characteristic of Violin String Based on High Speed Video Photography Experiment

  • Zhang Cheng-zhong1,2  Ye Bang-yan1 Liang Li-dong1  Hu Xi-zhi1 Zhao xue-zhi1
Author information +
文章历史 +

摘要

小提琴弓弦之间的相互作用机理非常复杂,由于粘滑摩擦作用形成一个复杂的振动系统。本文通过理论分析和实验方法,对琴弦的振动特性进行了研究。为了测量琴弦的三维振动情况,设计了一个基于高速摄影的非接触式光学测量系统,通过在琴弦上设置一些颜色标定点,拍摄拉、拨弦时琴弦的振动图像,得到了两种不同机制的琴弦振动特征,包括振动位移、速度及弦上标定点的空间运动轨迹等。对弦上不同位置点的位移曲线进行了比较,研究其振动锯齿波的正、逆程时间比值变化和振动包络线的形成过程,最后分析了影响弦振幅的因素。
  

Abstract

The interaction mechanism between violin bow and string is very complicated due to the stick-slip friction action, and it forms a complex vibration system. In this paper, the vibration characteristics of violin strings are studied through theoretical analysis and experimental method. In order to measure the three dimensional vibration configuration of the strings, an optical noncontact measurement system based on high-speed photography was designed. Some color marks are set on string and then get the vibration images when bow and pluck violin string. As a result, the string vibration characteristics of two different action mechanisms of plucked and bowed string are investigated, including vibration displacement, velocity and space trajectory of the mark point on string. After compare the displacement curves data among the different points on string, the variety of the ratio of positive process time to negative time of vibration sawtooth waveform are studied, and also the formation process of vibration enveloping curve. Finally the factors affecting the vibration amplitude of violin string are analyzed.

关键词

弦振动 / 高速摄影 / 亥姆霍兹运动 / 粘滑摩擦 / 运动轨迹

Key words

string vibration / high speed video photography / Helmholtz motion / stick-slip friction / motion track

引用本文

导出引用
张承忠1,2 叶邦彦1 梁立东1 胡习之1 赵学智1. 基于高速摄影实验的小提琴琴弦三维振动特性研究[J]. 振动与冲击, 2015, 34(9): 177-181
Zhang Cheng-zhong1,2 Ye Bang-yan1 Liang Li-dong1 Hu Xi-zhi1 Zhao xue-zhi1. Study on 3D Vibration Characteristic of Violin String Based on High Speed Video Photography Experiment[J]. Journal of Vibration and Shock, 2015, 34(9): 177-181

参考文献

[1] Colin E. Gough, Violin bow vibrations[J]. Acoust Soc Am, 2012,Vol.131(5):4152-4163.
[2] C. V. Raman, "On the Mechanical Theory of Bowed Strings and of Musical Instruments of the Violin Family, with Experimental Verification of the Results," Proc. Ind. Ass. Sci. 1918:15.
[3] J. Kohut, M.V. Mathews. Study of Motion of a Bowed Violin String [J]. Acoust Soc Am, 1971, 49(2): 532– 537.
[4] Roger J. Hanson. Unusual motions of a vibrating string [J]. Acoust. Soc. Am., 2003, 114(4): 2438-2438
[5] Knut Guettler. The Science of String Instruments, Springer.com.2010:279-299
[6] Pfeifle Folrian, Bader Rolf. Real-time finite-difference string-bow interaction floating point gate array (FPGA) model coupled to a violin body [J]. Acoust. Soc. Am., 2011, 130(4): 2507
[7] A.S. Vinod Kumar, Ranjan Ganguli. Violin string shape functions for finite element analysis of rotating Timoshenko beams[J]. Finite Elements in Analysis and Design.2011, 47(9):1091-1103.
[8] Knut Guettler, Hǎkon Thelin. Bowed-string multiphonics analyzed by use of impulse response and the Poisson summation formula[J].Acoust Soc Am, 2012, 131(1):766
[9] Vincent Debut, X. Delaune, J. Antunes. Identification of the nonlinear excitation force acting on a bowed string using the dynamical responses at remote locations[J]. International Journal of Mechanical Sciences, 2010, 52: 1419–1436.
[10] Woodhouse J. Bowed string simulation using a thermal friction model[J],Acta Acustica United with Acustica,Vol. 89 (2003): 355 – 368.
[11] V. Debut, X. Delaune, and J. Antunes, Identification of the nonlinear excitation force acting on a bowed string using the dunamical responses at remote locations, International Journal of Mechanical Sciences, 2010.52: 1419-1436.
[12] Inácio O, Antunes J, Wright M.C.M.Computational modeling of string-body interaction for the violin family and simulation of wolf notes. Journal of Sound and Vibration 2008(310):260–286.
[13] 赵学智, 向可, 叶邦彦等. 基于二次样条小波细节信号峰值的有效奇异值确定[J]. 振动与冲击, 2010, 29(011): 6-12.
Zhao Xue-zhi, Xiang Ke, Ye Bang-yan, Chen Tong-jian. Identif ication of statistical energy analysis parameters based on ERA [J]. Journal of Vibration and Shock: 2010, 29(011): 6-12.
[14] 卢德林, 郭兴明. 基于奇异谱分析的心音信号小波包去噪算法研究[J]. 振动与冲击, 2013, 32(18): 63-69.
Lu De-lin, Guo Xing-ming, Wavelet packet denoising algorithm for heart sound signal based on singular spectrum analysis[J]. Journal of Vibration and Shock: 2013, 32(18): 63-69.
[15] 郭荣,房怀庆,裘剡等.基于Tikhonov正则化及奇异值分解的载荷识别方法[J].振动与冲击,2014,33(6):53-58.
Novel load identification method based on the combination of Tikhonov regularization and singular  value decomposition[J].Journal of Vibration and Shock: 2014,33(6):53-58.

PDF(1883 KB)

1060

Accesses

0

Citation

Detail

段落导航
相关文章

/