基于最优广义S变换和脉冲耦合神经网络的轴承故障诊断

张云强,张培林,吴定海,李兵

振动与冲击 ›› 2015, Vol. 34 ›› Issue (9) : 26-31.

PDF(2652 KB)
PDF(2652 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (9) : 26-31.
论文

基于最优广义S变换和脉冲耦合神经网络的轴承故障诊断

  • 张云强,张培林,吴定海,李兵
作者信息 +

Bearing fault diagnosis based on optimal generalized S transform and pulse coupled neural network

  • ZHANG Yun-qiang, ZHANG Pei-lin, WU Ding-hai, LI Bing
Author information +
文章历史 +

摘要

针对滚动轴承故障信号具有明显的非线性和非平稳特征,提出一种基于最优广义S变换和脉冲耦合神经网络(PCNN)的故障特征提取方法。首先采用基于时频聚集性最优化的广义S变换获取轴承故障信号的时频表示,然后利用脉冲耦合神经网络对最优广义S变换时频图进行二值分解,提取二值图像的捕获比序列用于表达故障信号的故障特征。对滚动轴承4种状态信号进行分析,验证方法的有效性。结果表明该方法能够提取出更加有效的轴承故障特征参数,有利于提高轴承故障诊断的精度。

Abstract

For the nonlinear and non-stationary characteristics of rolling bearing fault signals, a feature extraction method based on optimal generalized S transform and pulse coupled neural network(PCNN) was proposed. Generalized S transform was optimized by measuring the time-frequency aggregation, and then utilized to achieve time-frequency representations of bearing fault signals. Time-frequency images were further decomposed into a series of binary images. The capture rate sequences of binary images were then defined and extracted as the bearing fault feature parameters. Rolling bearing signals of four different states were analyzed. The results indicate that the proposed method can extract more effective bearing fault feature parameters which are capable of improving the bearing fault diagnosis accuracy.
 

关键词

故障诊断 / 滚动轴承 / 特征提取 / 广义S变换 / 脉冲耦合神经网络

Key words

fault diagnosis / rolling bearing / feature extraction / generalized S transform / pulse coupled neural network(PCNN)

引用本文

导出引用
张云强,张培林,吴定海,李兵. 基于最优广义S变换和脉冲耦合神经网络的轴承故障诊断[J]. 振动与冲击, 2015, 34(9): 26-31
ZHANG Yun-qiang, ZHANG Pei-lin, WU Ding-hai, LI Bing. Bearing fault diagnosis based on optimal generalized S transform and pulse coupled neural network[J]. Journal of Vibration and Shock, 2015, 34(9): 26-31

参考文献

[1] 李辉, 郑海起, 唐立伟. 基于双树复小波包峭度图的轴承故障诊断研究[J]. 振动与冲击, 2012, 31(10): 13-18.
LI Hui, ZHENG Hai-qi, TANG Li-wei. De-noising method based on generalized morphological component analysis[J]. Journal of Vibration and Shock, 2012, 31(10): 13-18.
[2] 丁康, 李巍华, 朱小勇. 齿轮及齿轮箱故障诊断实用技术[M]. 北京: 机械工业出版社, 2005.
[3] 迟华山, 王红星, 郭奇, 等. 短时傅里叶变换在线性调频信号时频滤波中的应用[J]. 电讯技术, 2012, 52(2): 155-159.
CHI Hua-shan, WANG Hong-xing, GUO Qi, et al. Application of STFT in time-frequency filtering of LFM signals[J]. Telecommunication Engineering, 2012, 52(2): 155-159.
[4] 蔡艳平, 李艾华, 石林锁, 等. 基于EMD-WVD振动谱时频图像SVM识别的内燃机故障诊断[J]. 内燃机工程, 2012, 33(2): 72-79.
CAI Yan-ping, LI Ai-hua, SHI Lin-suo, et al. IC engine fault diagnosis method based on EMD-WVD vibration spectrum time-frequency image recognition by SVM[J]. Chinese Internal Combustion Engine Engineering, 2012, 33(2): 72-79.
[5] Saravanan N, Kumar Siddabattuni V N S, Ramachandran K I. A comparative study on classification of features by SVM and PSVM extracted using Morlet wavelet for fault diagnosis of spur bevel gear box[J]. Expert Systems with Applications, 2008, (35): 1351-1366.
[6] Stockwell R, Mansinha L, Lowe R. Localization of the complex spectrum: The S-transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998–1001.
[7] Djurovi I, Sejdi E, Jiang J. Frequency-based window width optimization for S-transform,[J]. AEU-International Journal of Electronics and Communications, 2008, 62(4): 245–250.
[8] 郑旭, 郝志勇, 金阳, 等. 自适应广义S变换在内燃机气缸盖振动特性研究中的应用[J]. 振动与冲击, 2011, 30(1): 167-170.
ZHENG Xu, HAO Zhi-yong, JIN Yang, et al. Application of adaptive generalized S-transform in vibration characteristics analysis of an IC engine cylinder head [J]. Journal of Vibration and Shock, 2011, 30(1): 167-170.
[9] Gu Xiaodong. Feature extraction using unit-linking pulse coupled neural network and its applications[J]. Neural Process Letter, 2008, (27): 25-41.
[10] MA Yi-de, LIU Li, ZHAN Kun, et al. Pulse coupled neural networks and one-class support vector machines for geometry invariant texture retrieval[J].Image and Vision Computing, 2010, (28): 1524-1529.
[11] 陈学华, 贺振华, 黄德济. 广义S变换及其时频滤波[J]. 信号处理, 2008, 24(1): 28-31.
CHEN Xue-hua, HE Zhen-hua, HUANG De-ji. Generalized S transform and its time-frequency filtering[J]. Signal Processing, 2008, 24(1): 28-31.
[12] 张云强, 张培林, 任国全. 简化PCNN在磨粒图像颜色特征提取中的应用[J]. 内燃机工程, 2013, 34(5): 69-75.
ZHANG Yun-qiang, ZHANG Pei-lin, REN Guo-quan. Application of Simplified PCNN in Color Feature Extraction for Wear Particle Images. [J]. Chinese Internal Combustion Engine Engineering, 2013, 34(5): 69-75.

PDF(2652 KB)

870

Accesses

0

Citation

Detail

段落导航
相关文章

/