本文针对某一乘用车车身结构振动引起的声辐射,建立了车身结构、声学空腔以及声固耦合有限元模型,分析了该乘用车车身的声固耦合特性。通过对车身各板件的贡献度分析,确定了对车内噪声贡献度最大的壁板。针对该壁板的阻尼减振降噪优化设计,建立了拓扑优化模型,采用渐进优化算法(ESO),计算了阻尼材料的优化布局。研究结果表明:阻尼材料的优化布局使阻尼材料的使用率大大提高,50%的阻尼材料用量能基本达到全覆盖阻尼材料壁板的降噪效果,阻尼结构优化设计对车内噪声控制具有一定的理论指导意义。
Abstract
The vehicle interior noise reduction is researched. The acoustic-structure property is analyzed based on white body, acoustic and acoustic-structure FEM models. The body panels which contribute most in interior noise are determined according to acoustic contribution analysis. To reduce the vibration and noise radiation, the optimization topology model is developed and Evolutionary Structural Optimization (ESO) method is introduced to obtain the optimal topology configuration of damping material. The results show that the optimal topology configuration can highly improve the efficiency of damping material. The noise reduction which is required for 100% damping material coverage can be obtained by the use of 50% damping material coverage. The optimization design for damping structure supplies theory support for the vehicle interior noise reduction.
关键词
阻尼 /
渐进优化 /
贡献度 /
车内噪声 /
拓扑优化
{{custom_keyword}} /
Key words
damping /
ESO /
contribution /
vehicle interior noise /
topology optimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张志飞,倪新帅,徐中明,等.基于结构优化的商用驾驶室模态特性改进[J]. 汽车工程,2011,33(4):290-293
Zhang Zhifei, Ni Xinshuai, Xu Zhongming, et al, Li Xiao. Modal Characteristics Improvement of a Commercial Vehicle Cab Based on Structural Optimization [J] . Automotive Engineering, 2011,33(4):290-293
[2] Kodivalam S, Yang R J, Multidisplinary Design Optimization of a Vehicle System in a Scalable High Performance Computing Environment [J]. Structural and Multidisciplinary Optimization,2004,26:256- 263.
[3] 简坚得.SUV车身结构噪声特性分析与优化[D].广州:华南理工大学,2011
[4] 杨搏,朱平,韩旭,等. 轿车车身结构噪声性能分析与优化研究[J]. 噪声与振动控制,2006,(5):74 -77
YANG Bo, ZHU Ping, HAN X u, GU Lei, et al Auto-Body Structure Noise Performance Analysis and Optimization Research [J]. Noise and Vibration Control, 2006,(5):4 -77
[5] 舒磊,方宗德,赵冠军. 驾驶室结构减振降噪的拓扑优化设计[J]. 振动与冲击,2008,3(27):114-116
SHU Lei, FANG Zong-de, ZHAO Guan-jun. Topology optimization design for noise reduction in a truck cab interior[J]. Journal of vibration and shock, 2008,3(27):114-116
[6] 吴桢,左言言,葛玮. 车身阻尼处理降噪的有限元分析[J]. 噪声与振动控制,2010,(3):81-84
WU Zhen, ZUO Yanyan, GE Wei. Finite Element Analysis of Noise Decreasing with Damping Treatment for Vehicle’s Body [J]. Noise and Vibration Control, 2008,3(27):114-116
[7] Lall A K, Asnani N T, Nakra B C. Damping Analysis of Partially Covered Sandwich Beams[J]. Journal of Sound and Vibration, 1988, 123(2) : 247 – 259
[8] Wang H J, Chen L W. Finite Element Dynamic Analysis of Orthotropic Cylindrical Shell with a Constrained Damping Layer [J]. Finite Element Analysis and Design, 2004, 40(7) : 737 - 755.
[9] 郑玲,谢熔炉,王宜,等. 基于优化准则的约束阻尼材料优化配置[J]. 振动与冲击,2010,29(11):156-159
ZHENG Ling, XIE Rong-lu, WANG Yi, et al. Optimal placement of constrained damping material in structures based on optimality criteria[J]. Journal of vibration and shock, 2010,29(11):156-159
[10]房占鹏,郑玲.约束阻尼结构的双向渐进拓扑优化[J].振动与冲击,2014,33(8):165-170.
FANG Zhan-peng,ZHENG Ling. Topological optimization for constrained layer damping material in structures using BESO method[J].Journal of Vibration and Shock,2014,33(8):165-170.
[11] 郭中泽,陈裕泽,侯强,等. 阻尼材料布局优化研究[J]. 兵工学报,2007,28(5):638-640
GUO Zhong-ze, CHEN Yu-ze, HOU Qiang, et al. Damping Material Optimal Placement in Damping Structure Design[J]. ACTA ARMAMENTARI I, 2007,28(5):638-640
[12] 陈学前,杜 强,冯加权. 运用有限元分析的阻尼板优化设计[J]. 振动、测试与诊断,2007,27(3):236-238
Chen Xueqian, Du Qiang, Feng Jiaquan. Optimization Design of Damping Disk Based on Finite Element Analysis [J]. Journal of Vibration, Measurement & Diagnosis,2007,27(3):236-238
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}