在使用统计能量分析对复杂的蜂窝夹层结构进行高频动力学响应预示的关键环节之一在于准确估算耦合损耗因子。本文研究应用对偶模态/有限元法(DFM/FEM)估算铝蜂窝夹层结构之间的耦合损耗因子,通过算例对该方法进行仿真验证,结果表明,该方法可行且高效准确。最后对L型耦合铝蜂窝夹层板结构进行振动实验,并使用功率输入法辨识试件间的耦合损耗因子,比较功率输入和和对偶模态/有限元法结果,两者一致性好,进一步验证了对偶模态/有限元法估算铝蜂窝夹层板系统耦合损耗因子的可行性,扩展了统计能量分析在复杂结构上的应用。
Abstract
The accurate estimate of Coupling Loss Factor is one of the most key steps in a SEA prediction work for high frequency vibration response of honeycomb sandwich structures. Coupling loss factors estimation of aluminum honeycomb sandwich structures using Dual Formulation Method/Finite Element Method(DFM/FEM) is studied. The numerical simulation result of demonstrates that the proposed method is feasible and efficient. Also vibration experiment on a L-shaped aluminum honeycomb sandwich plates is processed, and a power input method is used to identify the Coupling Loss Factor of the experimental plates. the results of DFM/FEM and a power input method are in agreement, which further verify Coupling loss factors estimation of aluminum honeycomb sandwich structures using DFM/FEM is feasible. The method extended the SEA in complex structures.
关键词
统计能量分析 /
对偶模态法 /
耦合损耗因子 /
铝蜂窝夹层板
{{custom_keyword}} /
Key words
Statistical Energy Analysis /
Dual Formulation Method /
Coupling Loss Factor /
Aluminum Honeycomb Sandwich Plates
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bies D A, Hamid S. In situ determination of loss and coupling loss factors by the power injection method[J]. Journal of Sound and Vibration, 1980, 70(2): 187-204.
[2] Lalor N. The experimental determination of vibrational energy balance in complex structures [C]. Proceedings SIRA Conference on Stress and Vibration. London, 1989. 108-429
[3] 张广平, 戴干策. 复合材料蜂窝夹芯板及其应用[J]. 纤维复合材料,2000,(2): 25-27.
Zhang Guangping, Dai Ganche. Honeycomb Sandwich Panels Panels of Composites and Their Application [J]. FIBER COMPOSITES,2000,(2): 25-27.
[4] Wilkinson J.P.D. Modal densities of certain shallow structural elements[J]. Joumal of Acoustical Society of America, 1968(43): 245-251.
[5] Renji K, Nair P S and Narayanan S. Modal density of composite honeycomb sandwich panels. Journal of Sound and Vibration. 1996(195): 687-699.
[6] Erickson L. L. Modal density estimates for sandwich panels. Theory and experiment[R]. NASA TND-5771, 1979.
[7] 韩增尧, 曲广吉. 航天器宽频随机振动响应分析[J]. 中国空间科学技术,2002, (2):24-40.
Han Zengyao, Qu Guangji. Study of Wide-band Random Vibration Response Prediction for the Spacecraft Structures [J]. STRUCTURE & ENVIRONMENT ENGINEERING,2002, (2):24-40.
[8] 姚德源, 王其政. 统计能量分析原理及其应用[M].北京理工大学出版社.1995. 1-173
[9] Maxit L, Guyader J L. Estimation of SEA coupling loss Factors using a dual formulation and FEM modal information, partⅠ: Theory[J]. Journal of Sound and Vibration. 2001, 239(5): 907-930.
[10] Maxit L, Guyader J L. Estimation of SEA coupling loss Factors using a dual formulation and FEM modal information, partⅡ: Numerical applications[J]. Journal of Sound and Vibration. 2001, 239(5): 931-948.
[11] 富明慧, 伊久仁. 蜂窝芯层的等效弹性参数[J]. 力学学报, 1999, 31(1): 113-118.
Fu Minghui, Yin Jiuren. Equivalent Elastic Parameters Of The Honeycomb Core [J]. ACTA MECHANICA SINICA, 1999, 31(1): 113-118.
[12] Lyon R H. Statistical energy analysis of dynamical systems: theory and applications[M]. Cambridge, Mass, MIT Press. 1975.1-34
[13] 乔百杰,赵彤,陈雪峰.功率流测量以及振动能量参数估计试验研究[J].振动与冲击,2014,33(7):194-198
QIAO Bai-jie,ZHAO Tong,CHEN Xue-fen. Tests for power flow measurement and vibrational energy estimation [J]. Journal of Vibration and Shock,2014,33(7):194-198
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}