基于齿轮传动系统横-扭-摆耦合非线性动力学模型的齿廓修形优化设计

王成1,2, 刘辉1, 项昌乐1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 141-148.

PDF(2148 KB)
PDF(2148 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 141-148.
论文

基于齿轮传动系统横-扭-摆耦合非线性动力学模型的齿廓修形优化设计

  • 王成1,2, 刘辉1, 项昌乐1
作者信息 +

Optimum profile modification of spur gear system based on lateral-torsional-rocking coupled nonlinear dynamic model

  • WANG Cheng1,2,  LIU Hui1,  XIANG Changle1
Author information +
文章历史 +

摘要

基于齿轮传动系统动力学模型的齿廓修形优化设计可真实地反映修形参数对齿轮动态特性的影响。考虑几何偏心、陀螺力矩和齿向偏载力矩,建立了单级齿轮传动系统10自由度横-扭-摆耦合非线性动力学模型。提出了考虑齿轮实际运动状态并可适用于齿廓修形齿轮的啮合刚度模型,并采用解析法计算啮合刚度。为了降低齿轮传动系统的振动和噪声,以减小齿轮传动系统的动载系数为目标,建立了基于齿轮传动系统横-扭-摆耦合非线性动力学模型的齿廓修形优化模型。对某重载车辆齿轮传动系统进行了齿廓修形优化设计,优化结果有效的降低了齿轮的动载荷,可为设计低振动和低噪声的齿轮传动系统提供依据。

Abstract

Optimum profile modification of spur gear system basd on dynamic model provide a true reflection of the influence of profile modifications on dynamic characterisitc. Taking into account the geometrey eccentricity, gyroscopic effect and load distribution factor along tooth width, a ten degree-of-freedom lateral-torsional-rocking coupled nonlinear dynamic model of spur gear system is established. The mesh stiffness model is proposed wich considered the influence of profile modification and dynamic condition of gear pair, and the analytical method is used to calculated the mesh stiffness. In order to reduce the dynamic load of gear transmission,the reduction of dynamic load factor is taken as objective, the dynamic characteristic optimization model of spur gear system on the basis of profile modification is proposed. Profile modification of certain heavy-duty vehicle is carried out. The results show that the dynamic load of gear transmission system is effectively reduced after optimization, which rovide reference for the design of low vibration and low noise gear transmission system.

关键词

齿轮传动 / 齿廓修形 / 优化设计 / 非线性 / 啮合刚度

Key words

gear transmission / profile modification / optimization design / nonlinear / mesh stiffness

引用本文

导出引用
王成1,2, 刘辉1, 项昌乐1. 基于齿轮传动系统横-扭-摆耦合非线性动力学模型的齿廓修形优化设计[J]. 振动与冲击, 2016, 35(1): 141-148
WANG Cheng1,2, LIU Hui1, XIANG Changle1. Optimum profile modification of spur gear system based on lateral-torsional-rocking coupled nonlinear dynamic model[J]. Journal of Vibration and Shock, 2016, 35(1): 141-148

参考文献

[1] 李润方, 王建军. 齿轮系统动力学[M]. 北京: 科学出版社, 1996.
[2] 仙波正驻. 高强度齿轮设计[M]. 机械工业出版社, 1981.
[3] 李润方. 齿轮传动的刚度分析和修形方法[M]. 重庆大学出版社, 1998.
[4] 王朝晋,丁玉成,关于齿廓修形的研究(二)[J]. 齿轮,1986,l0(3).
[5] TAVAKOLI M S, HOUSER D R. Optimum profile modifications for the minimization of static transmission errors of spur gears[J]. Journal of Mechanisms Transmissions and Automation in Design, 1986, 108: 86-95.
[6] 袁哲, 孙志礼, 王丹, 陈聪慧. 基于遗传算法的直齿圆柱齿轮修形优化减振[J]. 东北大学学报(自然科学版),2010.6,31(6),873-876.
YUAN Zhe, SUN Zhi-li, WANG Dan,et.al.. GA-based Optimum Profile Modification of Spur Gears for Vibration Damping[J]. Journal of Northeastern University (Natural Science), 2010.6, 31(6), 873-876.
[7] 蒋进科, 方宗德, 王峰. 降低斜齿轮噪声的对角修形优化设计[J]. 振动与冲击, 2014, 33(7): 63-67.
JIANG Jinke,FANG Zongde,WANG Feng. Optimal design with diagonal modification for reducing helical gear noise[J]. Journal of vibration and shock. 2014, 33(7): 63-67.
[8] BONORI G, BARBIERI M, PELLICANO M. Optimum profile modifications of spur gears by means of genetic algorithms[J]. Journal of Sound and Vibration, 2008, 313(3): 603-616.
[9] MARCELLO F, FARHAD S S, GABRIElE B, FRANCESCO P. Dynamic optimization of spur gears[J]. Mechanism and Machine Theory, 2011, 46: 544-557.
[10] 唐增宝, 钟毅芳, 陈久荣. 修形齿轮的最佳修形量和修形长度的确定[J]. 华中理工大学学报, 1995, 23(2): 125-128.
TANG Zengbao, ZHONG Yifang, CHEN Jiurong. Determination of the Optimum Modifieative Number And Length for Gear Profile[J]. Journal of Huazhong University, 1995, 23(2): 125-128.
[11] 朱传敏, 宋孔杰, 田志仁. 齿轮修形的优化设计与试验研究[J]. 机械工程学报, 1998, 34(4): 63-68.
ZHU Chuanmin, SONG Kongjie, TINA Zhiren. Optimum design and experiment study on the gear profile modification[J]. Chinese journal of Mechanical Engineering, 1998, 34(4): 63-68.
[12] A.Kahraman, R.Singh. Interactions Between Time varying Mesh stiffness and Backlash Non-linearity in a Geared System[J]. Journal of Sound and Vibration, 1991, 146, 135-156.
[13] Yimin Zhang, Qibin Wang, Hui Ma, Jing Huang Chunyu Zhao. Dynamic analysis of three dimensional helical geared rotor system with geometric eccentricity[J]. Journal of Mechanical Science and Technology,2013, 27 (11), 3231-3242.
[14] Woohyung Kim, Hong HeeYoo, JintaiChung. Dynamic analysis for a pair of spur gears with transla-tional motion due to bearing deformation[J]. Journal of Sound and Vibration, 2010, 329, 4409-4421.
[15] M. TSAI, Y. TSAI. Design of high-contact-ratio spur gears using quadratic parametric tooth profiles[J]. Mechanism and Machine Theory. 1998, 33 (5), 551-564.
[16] A. Fernandez, M. Iglesias, A. de-Juan, et.al. Gear transmission dynamic: Effects of tooth profile deviations and support flexibility[J]. Applied Acoustics , 2014, 77, 138-149.
[17] 孙月海. 渐开线直齿圆柱齿轮修缘减振的动力学研究[D]. 天津大学博士学位论文, 2000.7.
[18] CHEN Z G, SHAO Y M, Mesh stiffness calculation of a spur gear pair with tooth profile modification and tooth root crack[J]. Mechanism and Machine Theory, 2013, 62 63–74.
[19] Chaari F, Fakhfakh T, Haddar M. Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness[J]. European Journal of Mechanics A/Solids, 2009, 28, 461-468.
[20] 朱孝录. 齿轮传动设计手册[S]. 化学工业出版社, 1993.

PDF(2148 KB)

Accesses

Citation

Detail

段落导航
相关文章

/