簧片式触点开关广泛应用于舰艇的电气设备中。舰艇受到爆炸冲击时,簧片式触点开关易发生断路或簧片产生塑性变形,影响设备的可靠性,危害舰艇的安全。为了校核簧片式触点开关的抗冲击能力,首先对处于闭合状态的簧片式触点开关进行接触模态分析,然后对其施加多种典型冲击载荷并采用Bathe复合积分法开展计算,最后通过提取动、静触头之间的接触力来判断簧片式触点开关是否发生断路,同时观察簧片根部在冲击载荷下是否发生塑性变形。研究发现:动、静触头之间的接触力在冲击载荷作用时波动剧烈,而在自由振动时则呈现出明显的周期性,且振动频率接近一阶固有频率;在幅值相同的情况下,高频冲击载荷更容易诱发剧烈的接触颤振而断路,低频冲击载荷会使簧片根部的应力较大而塑性变形。讨论了负波延迟对冲击响应的影响,提出了改善簧片式触点开关抗冲击能力的措施。
Abstract
Reed contact switch is widely used in the naval ships' electrical equipment. When subjected to explosive impact, the reed contact switch tends to open or the reeds produce plastic deformation, which affects the reliability of the equipment and endangers the safety of the ship. To check the shock resistance of the reed contact switch, contact modes of the closed switch are analyzed firstly, and then the response under several typical impact loads is calculated with Bathe composite method. Finally, whether the reed contact switch occurs open circuit is determined by extraction of the contact force between the dynamic contactor and the static contactor, while whether the reeds are plastically deformed under impact loading is observed. The study shows that the contact force between contactors volatiles during impact loading while it shows a clear periodicity in the free vibration with the vibration frequency approaching the first-order natural frequency; In the case of the same amplitude, high frequency impact loads are more likely to cause violent contact chatter and broken circuit, while low frequency impact loads make the larger stress and plastic deformation of the root of reeds. Influence of negative wave delay to shock response is discussed, and measures to improve the reed contact switch to shock resistance is proposed.
关键词
触点开关 /
舰艇设备 /
冲击 /
接触特性 /
负波延迟 /
应力响应 /
有限元法
{{custom_keyword}} /
Key words
reed contact switch /
ship equipment /
shock /
contact characteristics /
negative wave delay /
stress response /
finite element method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王鸿翔. 机械设计手册[M].北京: 化学工业出版社, 2004.
WANG Hong-xiang. Machinerys Handbook[M]. Beijing: Chemical Industry Press, 2004.
[2] 肖玲, 张国贤. 采用ANSYS对片弹簧式触点开关受力状况的研究[J].现代制造工程, 2011, (1): 119-122.
XIAO Ling, ZHANG Guo-xian. Strength Analysis of Contact Jeaf Spring by ANSYS [J]. Modern Manufacturing Engineering, 2011, (1): 119-122.
[3] Xiong Jun, He Junjia, Zang Chunyan. Dynamic Analysis of Contact Bounce of Aerospace Relay Based on Finite Diffference Method[J].Chinese Journal of Aeronautics, 2008, (22): 262-267.
[4] Triantis D, Vallianatos F. Relaxation phenomena of electrical signal emissions from rock following application of abrupt mechanical stress [J]. Annals of Geophysics, 2012, 55(1): 207-212.
[5] Gollee R, Gerlach G. A FEM-based method for analysis of the dynamic behavior of AC contactors[J]. IEEE Trans. on Magnetics, 2000, 36(4): 1337-1340.
[6] 沈荣瀛, 华宏星. 舰船机械设备冲击隔离技术研究进展 [J].船舶力学, 2010, 20(5): 299-301.
SHEN Rong-ying, HUA Hong-xing. Advances in Study on Shock Isolation of naval Equipment [J]. Journal of Ship Mechanics, 2010, 20(5): 299-301.
[7] 宫国田, 金辉, 张妹红, 等. 国外舰艇抗水下爆炸研究进展[J].兵工学报, 2010, 31(4): 293-298.
GONG Guo-tian, Jin Hui, ZHANG Mei-hong. The Advance of Anti-explosion Capability of Foreign Naval Ships [J]. ,Acta Armamentarii, 2010, 31(4): 293-298.
[8] 汪玉. 实船水下爆炸冲击试验及防护技术[M].北京: 国防工业出版社, 2010.
WANG Yu. Naval Ship Anti-shock Technology in underwater explosion [M]. Beijing: National Defence Industry Press, 2010.
[9] Bathe KJ. Finite element procedures in engineering analysis[M]. New Jersey: Prentice-Hall, Inc.,1982.
[10] GJB150.18-86 军用设备环境试验方法-冲击试验[s], 1986.
GJB150.18-56. Military equipment environment test method-Shock Test, [s], 1986.
[11] Bathe KJ. Finite element procedures [M]. New Jersey: Prentice-Hall, Inc., 1996.
[12] 汪玉. 舰船现代冲击理论及应用[M]. 北京: 科学出版社, 2005.
WANG Yu. Ships Impact Modern Theory and Application [M]. Beijing: Science Press, 2005.
[13] 刘领先, 姜涛. DDAM与SRS对舰船甲板设备抗冲击考核对比研究[J]. 舰船科学技术, 2011, 33(10): 54-57.
Contrast between SRS and DDAM at Assessment of Marine Equipment Shock-resistant Ability[J]. Ship Science and Technology, 2011, 33(10): 54-57.
[14] Bathe KJ. ON NONLINEAR DYNAMIC ANALYSIS USING SUBSTRUCTUREING AND MODE SUPERROSITION[J]. Computers & Structures, 1981, 13: 699-707.
[15] W.J.T.Daniel. The subcycled Newmark Algorithm [J]. Computational Mechanics, 1997, 20: 272-281.
[16] René de Borst, Mike A. Crisfield, Joris J.C. Remmers. Non-linear Finite Element Analysis of Solids and Structures [M]. West Sussex: John Wiley & Sons Ltd., 2012.
[17] Bathe K, Baig M. On a Composite Implicit Time Integration Procedure for Nonlinear Dynamics [J]. Computers & Structures, 2005, 83(25): 13–34.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}