针对延性扩孔破坏模式,讨论了刚性尖头弹贯穿韧性金属靶板的已有六个理论模型(F-W、C-L、JZG、WHM、S-W和JBL)对于靶板厚度和弹头形状的适用范围,统一了各模型参数的选取准则,分别给出了JZG模型尖锥头形和尖卵头形弹体半锥角和无量纲曲率半径(CRH)的适用范围。基于12组冲击速度为200~1600m/s,厚径比(靶体厚度与弹身直径之比H/d)为0.605~9.17的多种弹靶材料的穿甲实验,得出:对于尖锥头形弹体贯穿靶板后的残余速度,S-W和WHM、JZG、F-W模型分别对于较薄靶板、中等厚度靶板和较厚靶板的预测效果较好;而对于尖卵头形弹体,WHM和JBL模型预测效果较好。同时,各模型对于弹道极限预测效果的结论和残余速度一致。分析结论可为坦克、舰船等单、多层金属装甲防护结构设计与计算提供参考和依据。
Abstract
Aiming at the failure mode of ductile hole expansion, this paper discussed the applicable scope of projectile nose shape and plate thickness of six theoretical(F-W, C-L, JZG, WHM, S-W, JBL) models for a rigid sharp-nosed projectile perforating ductile metallic plate. The criterion of parameters chosen in each model was unified. Additional, the applicable scope of half apex angle and CRH for sharp conical and ogive projectile in JZG model were proposed, respectively. Based on the 12 perforation tests, in which impact velocities were 200~1600 m/s and dimensionless plate thicknesses (the ratio of plate thickness and projectile diameter) were 0.605~9.17, it concluded that, as to the prediction of residual velocity of conical projectile after perforating the plate, S-W and WHM, JZG, F-W model is better for the thin, medium and thick plate thickness, respectively. As to the ogive projectile, WHM and JBL model is better. Meanwhile, the conclusions of prediction of ballistic limit velocity are consistent with the prediction of residual velocity. The conclusions can provide references for the design and calculations of single and multi-layered metallic armor protective structures of tanks and ships.
关键词
刚性弹 /
金属靶板 /
延性扩孔 /
贯穿 /
空腔膨胀
{{custom_keyword}} /
Key words
rigid projectile /
metallic plate /
ductile hole expansion /
perforation /
cavity expansion
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈小伟. 穿甲/侵彻问题的若干工程研究进展 [J]. 力学进展, 2009, 39(3): 316-351.
Chen X W. Advances in the penetration/perforation of rigid projectiles [J]. ADVANCES IN MECHANICS, 2009, 39(3): 316-351.
[2] 肖云凯, 吴昊, 方秦等. 穿甲弹冲击多层金属靶板终点弹道参数的研究进展 [J]. 防护工程, 2014, 36(3): 52-68.
Xiao Y K, Wu H, Fang Q, et al. Review on the terminal ballistic parameters of the armor-piercing penetrator striking the multi-layered metallic shields. PROJECTIVE ENGINEERING, 2014, 36(3): 52-68.
[3] 蒋志刚, 曾首义, 周建平. 尖头弹丸撞击下金属靶板弹道极限的两种工程模型 [J]. 应用力学学报, 2005, 22(1): 21-25.
Jiang Z G, Zeng S Y, Zhou J P. The two engineering models of ballistic limits for sharp-nosed projectile striking metallic plates. CHINESE JOURNAL OF APPLIED MECHANICS, 2005, 22(1): 21-25.
[4] Forrestal M J, Warren T L. Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates [J]. International Journal of Impact Engineering, 2009, 36(2): 220-225.
[5] Chen X W, Li Q M. Perforation of a thick plate by rigid projectiles [J]. International journal of impact engineering, 2003, 28(7): 743-759.
[6] 蒋志刚, 曾首义, 周建平. 中等厚度金属靶板的三阶段贯穿模型 [J]. 兵工学报, 2007, 28(9): 1046-1052.
Jiang Z G, Zeng S Y, Zhou J P. A three-stage model for the perforation of moderately thick metallic plates. ACTA ARMAMENTARII, 2007, 28(9): 1046-1052.
[7] Wen H M. Predicting the penetration and perforation of targets by projectiles at normal incidence [J]. Mechanics of structures and machines, 2002, 30(4): 543-577.
[8] 孙炜海. 锥头弹丸正撞击下金属靶板破坏模式的理论和数值模拟研究 [D]. 合肥:中国科学技术大学博士学位论文, 2009.
Sun W H. Theoretical and numerical study on failure modes of metal plates under normal impact by conical-nosed projectiles [D]. Doctoral thesis, University of Science and Technology of China, Hefei, 2009.
[9] 蒋志刚, 曾首义, 周建平. 分析金属靶板弹道极限的延性扩孔模型[J]. 弹道学报, 2004, 16(1): 54-59.
Jiang Z G, Zeng S Y, Zhou J P. A model for ballistic limit of thick metallic targets struck by projectiles with conical or ogive nose. Journal of Ballistics, 2004, 16(1): 54-59.
[10] Chen X W, Huang X L, Liang G J. Comparative analysis of perforation models of metallic plates by rigid sharp-nosed projectiles [J]. International Journal of Impact Engineering, 2011, 38(7): 613-621.
[11] 黄徐利, 陈小伟, 梁冠军. 尖头弹穿甲韧性金属靶模型分析 [J]. 爆炸与冲击, 2012, 31(5): 490-496.
Huang X L, Chen X W, Liang G J. Analysis on perforation of ductile metallic plates by a rigid sharp-nosed projectile. Explosion and Shock Waves, 2012, 31(5): 490-496.
[12] 蒋志刚, 曾首义, 周建平. 刚性尖头弹侵彻有限厚度金属靶板分析模型 [J]. 兵工学报, 2007, 28(8): 923-929.
Jiang Z G, Zeng S Y, Zhou J P. An analytical model for penetration into finite thickness metallic target struck by rigid Sharp-nosed projectiles. ACTA ARMAMENTARII, 2007, 28(8): 923-929.
[13] Wen H M. Penetration and perforation of thick FRP laminates [J]. Composites Science and Technology, 2001, 61(8): 1163-1172.
[14] Recht R F, Ipson T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384-390.
[15] 孙炜海, 文鹤鸣. 锥头弹丸低速撞击下薄金属靶板的穿透 [J]. 固体力学学报, 2009, 30(4): 361-367.
Sun W H, Wen H M. Perforation of thin metal plates struck by conical-nosed projectiles at relatively low velocities. CHINESE JOURNAL OF SOLIDA MECHANICS, 2009, 30(4): 361-367.
[16] Piekutowski A J, Forrestal M J, Poormon K L, et al. Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts [J]. International Journal of Impact Engineering, 1996, 18(7): 877-887.
[17] Børvik T, Clausen A H, Hopperstad O S, et al. Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles-experimental study [J]. International Journal of Impact Engineering, 2004, 30(4): 367-384.
[18] Rosenberg Z, Forrestal M J. Perforation of aluminum plates with conical-nosed rods—additional data and discussion [J]. Journal of applied mechanics, 1988, 55(1): 236-238.
[19] Forrestal M J, Luk V K, Brar N S. Perforation of aluminum armor plates with conical-nose projectiles [J]. Mechanics of Materials, 1990, 10(1): 97-105.
[20] Chen X W, Li Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619-637.
[21] Luk V K, Forrestal M J, Amos D E. Dynamic spherical cavity expansion of strain-hardening materials [J]. Journal of Applied mechanics, 1991, 58(1): 1-6.
[22] Dey S, Børvik T, Hopperstad O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes [J]. International Journal of Impact Engineering, 2004, 30(8): 1005-1038.
[23] Børvik T, Forrestal M J, Warren T L. Perforation of 5083-H116 aluminum armor plates with ogive-nose rods and 7.62 mm APM2 bullets [J]. Experimental Mechanics, 2010, 50(7): 969-978.
[24] Tucker M T, Horstemeyer M F, Whittington W R, et al. The effect of varying strain rates and stress states on the plasticity, damage, and fracture of aluminum alloys [J]. Mechanics of Materials, 2010, 42(10): 895-907.
[25] Dey S, Børvik T, Hopperstad O S, et al. On the influence of fracture criterion in projectile impact of steel plates [J]. Computational Materials Science, 2006, 38(1): 176-191.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}