非线性时变结构随机地震响应最优多项式控制

彭勇波,李 杰

振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 210-215.

PDF(1464 KB)
PDF(1464 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 210-215.
论文

非线性时变结构随机地震响应最优多项式控制

  • 彭勇波,李  杰
作者信息 +

Optimal polynomial control of random seismic response of non-linear time-varying structures

  • PENG Yongbo, LI Jie
Author information +
文章历史 +

摘要

以随机地震动作用下具有Bouc-Wen滞回特性的非线性结构系统为受控对象,开展了最优多项式控制算法研究:包括系统矩阵中Maclaurin展开取初始零值衍生的具有时不变增益矩阵的控制律,和系统矩阵中Maclaurin一阶展开衍生的具有时变增益矩阵的控制律。研究表明,受控结构层间位移响应的变异性明显降低,结构的安全性显著提高。同时,基于时不变增益矩阵的控制律的控制效果在一定程度上受制于控制力施加的大小与系统稳定性之间的平衡关系,而考虑了每一个时间步位移和速度对增益矩阵影响、基于时变增益矩阵的控制律则能以较小的控制出力获得较好的控制效果。

Abstract

The physically-motivated stochastic optimal control has been proved to be efficient in performance improvement and risk mitigation of engineering structures. In this paper, the polynomial control method in context of the physical scheme ruling nonlinear stochastic systems is re-visited, of which time-variant gain parameters are considered. It is typically different from the previous investigation on the control policy with time-invariant gain parameters. The exceedance probability of structural states and control force serves as the critical argument of probabilistic criterion, whereby the parameter optimization of control policy can be readily achieved. A randomly base-excited shear frame structure with Bouc-Wen behaviors is used as the objective for control test. Numerical result indicates the efficiency of the proposed stochastic optimal control schemes that the variation of inter-storey drift of the structure reduces significantly, and the structural safety is enhanced sufficiently. The benefit of optimal polynomial control with time-invariant gain parameters limits in system stability hinging on the control force; while the optimal control with time-variant gain parameters involves the contribution of structural velocity and displacement to the gain matrix at each time step, which results in a better structural performance with a lower control effort.

关键词

多项式控制 / 增益矩阵 / 超越概率 / 非线性结构 / 时变

Key words

polynomial control / gain matrix / exceedance probability / nonlinear structures / time-variant

引用本文

导出引用
彭勇波,李 杰 . 非线性时变结构随机地震响应最优多项式控制[J]. 振动与冲击, 2016, 35(1): 210-215
PENG Yongbo, LI Jie. Optimal polynomial control of random seismic response of non-linear time-varying structures[J]. Journal of Vibration and Shock, 2016, 35(1): 210-215

参考文献

[1] Yang JN, Li Z, Vongchavalitkul S. Stochastic hybrid control of hysteretic structures [J]. Probabilistic Engineering Mechanics, 1994, 9(1-2): 125-133.
[2] Zhu WQ, Ying ZG, Ni YQ, Ko JM. Optimal Nonlinear stochastic control of hysteretic systems [J]. ASCE Journal of Engineering Mechanics, 2000, 126(10): 1027-1032.
[3] Yang JN. Application of optimal control theory to civil engineering structures [J]. ASCE Journal of the Engineering Mechanics Division, 1975, 101(EM6): 819-838.
[4] Li J, Peng YB, Chen JB. A physical approach to structural stochastic optimal controls [J]. Probabilistic Engineering Mechanics, 2010, 25(1): 127-141.
[5] Li J, Peng YB, Chen JB. Nonlinear stochastic optimal control strategy of hysteretic structures [J]. Structural Engineering & Mechanics, 2011, 38(1): 39-63.
[6] Yong JM, Zhou XY. Stochastic Controls: Hamiltonian Systems and HJB Equations [M]. Springer, New York, 1999.
[7] Li J, Peng YB, Chen JB. Probabilistic criteria of structural stochastic optimal controls [J]. Probabilistic Engineering Mechanics, 2011, 26(2): 240-253.
[8] Li J, Chen, J.B. Stochastic Dynamics of Structures [M]. John Wiley & Sons, Singapore, 2009.
[9] Foliente GC. Hysteresis modeling of wood joints and structural systems [J]. Journal of Structural Engineering, 1995, 121(6): 1013-1022.
[10] Zhang WS, Xu YL. Closed form solution for along wind response of actively controlled tall buildings with LQG controllers [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 785–807.
[11] 李杰, 艾晓秋. 基于物理的随机地震动模型研究[J]. 地震工程与工程振动, 2006, 26(5): 21-26.
LI Jie, AI Xiaoqiu. Study on random model of earthquake ground motion based on physical process [J]. Earthquake Engineering and Engineering Vibration, 2006, 26(5): 21-26.
[12] Chen JB, Li J. The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters [J]. Structural Safety, 2007, 29(2): 77-93.

PDF(1464 KB)

Accesses

Citation

Detail

段落导航
相关文章

/