热弹耦合梁结构动力响应的区间数值分析

云永琥 陈建军 曹鸿钧

振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 216-221.

PDF(1313 KB)
PDF(1313 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 216-221.
论文

热弹耦合梁结构动力响应的区间数值分析

  • 云永琥 陈建军 曹鸿钧
作者信息 +

Interval Numerical Analysis of Dynamic Response of a Thermoelastic Coupling Beam Structure#br#

  • YUN Yonghu  CHEN Jianjun  CAO Hongjun
Author information +
文章历史 +

摘要

研究了含有区间参数梁结构在温度载荷和力载荷共同作用下的动力响应问题,考虑材料变形与传热的相互影响,建立了梁在热弹耦合下的动力学有限元模型,并给出了对结构瞬态热传导方程与动力学方程进行相互交替迭代求解的计算方法。针对结构响应不确定性问题,以不确定参数作为约束变量,通过寻求结构响应函数的区间范围,将区间问题转化为优化问题,并利用遗传算法给出了结构响应函数的区间界限。通过算例及与概率有限元方法的计算结果比较,表明文中所提出方法的可行性和有效性,并获得在热弹耦合作用下梁结构的固有振动频率有所增加,而振动响应振幅则逐渐减弱的结论。该方法只需已知不确定参数所在范围的界限,而无需其他统计信息,为解决区间参数热弹耦合梁问题提供了一种途径。

Abstract

Dynamic response of thermoelastic coupling of beam structure with interval parameters is studied under both thermal load and force load. Considering interaction of material deformation and heat conduction, the dynamic model of beam structure is set up using the finite element method. The calculation method is proposed for solving the transient temperature field and dynamical response by iterative solution. For structural response uncertainty, with uncertain parameters as a constraint variables,the interval bounds of structural response function is solved by the corresponding optimization problems, and the genetic algorithm is used to solve the global optimization model. Compared with the probabilistic analysis method,the numerical example indicates the feasibility and validity of the proposed method, and also found that the natural frequency of beam is increased and the amplitude of vibration is gradually decayed with thermoelastic coupling effect. The proposed method only needs to know the limits of the range where the uncertain parameters, without needing the probability information, and provides a way to solve such a complex problems of a thermoelastic coupling beam structure with uncertainty.

 

关键词

热弹耦合 / 区间有限元 / 全局优化 / 遗传算法 / 动力响应 / 固有频率

Key words

thermoelastic coupling / interval finite element method / global optimization / genetic algorithm / dynamic response / natural frequency

引用本文

导出引用
云永琥 陈建军 曹鸿钧. 热弹耦合梁结构动力响应的区间数值分析[J]. 振动与冲击, 2016, 35(1): 216-221
YUN Yonghu CHEN Jianjun CAO Hongjun. Interval Numerical Analysis of Dynamic Response of a Thermoelastic Coupling Beam Structure#br#[J]. Journal of Vibration and Shock, 2016, 35(1): 216-221

参考文献

[1] Earl A Thornton, Yool A Kim. Thermally induced bending vibrations of a flexible rolled-up solar array[J]. Journal of Spacecraft and Rockets, 1993, 30(4): 438-448.
[2] Zhao, S. G. Wang, J. T.; Li, K.; Wu, D. F. Thermally induced vibration analysis of laminated plate considering radiation by finite element method[J]. Journal of Mechanics, 2011, 27(4): 33-37.
[3] Boly B A. Thermally induced vibrations of beams[J]. Journal of the Aeroautical Science, 1956, 23(2): 179-181.
[4] 安翔, 冯刚. 某空间站太阳电池阵中央桁架热-结构耦合动力学分析[J]. 强度与环境, 2005, 32(3): 8-13.
An Xiang, Feng Gang. Thermally induced vibration of the main mast of the space station's solar arrays[J]. Structure & Environment Engineering, 2005, 32(3): 8-13.
[5] Sun Yuxin, Saka Masumi. Thermoelastic damping in micro-scale circular plate resonators[J]. Journal of Sound and Vibration, 2010, 329(3): 328-337.
[6] 李智勇, 刘锦阳, 洪嘉振. 作平面运动的二维平面板的热耦合动力学问题[J]. 动力学与控制学报, 2006, 4(2): 114-121.
Li Zhiyong, Liu Jinyang, Hong Jiazhen. Coupled thermoelastic dynamics of a two-dimensional plate undergoing planar motion[J]. Journal of Dynamics and Control, 2006, 4(2): 114-121.
[7] 树学锋, 兰姣霞, 武勇忠. 大挠度圆柱壳在温度场中的热弹耦合振动分析[J]. 应用数学和力学, 2004, 25(9): 910-916.
Shu Xuefeng, Lan Jiaoxia, Wu Yongzhong. Analysis of thermal_elastic coupling vibration of large deflection cylindrical shell[J]. Applied Mathematics and Mechanics, 2004, 25(9): 910-916.
[8] Nowruzpour Mehrian, S.M, Naei, M.H, Mehrian, S. Zamani. Dynamic response for a functionally graded rectangular plate subjected to thermal shock based on LS theory[J]. Applied Mechanics and Materials, 2013, 332(1): 381-395.
[9] 王光远. 论不确定性结构力学的发展[J]. 力学进展, 2002, 32(2): 205-211.
   Wang Guangyuan. On the development of uncertain structural mechanics[J]. Advance in Mechanics, 2002, 32(2): 205-211.
[10] 阎彬, 陈建军, 马洪波. 随机弹性杆在随机瞬态温度场下的热响应分析[J]. 电子科技大学学报, 2012, 41(4): 631-636.
Yan Bin, Chen Jianjun, Ma Hongbo. Thermal response analysis of stochastic pole structures under random transient temperature field[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(4): 631-636.
[11] 王敏娟, 陈建军, 林立广, 贾爱芹, 魏永祥. 区间参数智能梁结构闭环系统动态特性分析[J]. 电子科技大学学报, 2011, 40(1): 152-156.
Wang Minjuan, Chen Jianjun, Lin Liguang, Jia Aiqin, Wei Yongxiang. Dynamic characteristic analysis of closed loop systemsfor the intelligent beam with interval parameters[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 152-156.
[12] 李金平, 陈建军, 朱增青, 宋宗凤. 结构区间有限元方程组的一种解法[J]. 工程力学, 2010, 27(4): 79-83.
   Li Jinping, Chen Jianjun, Zhu Zengqing, Song Zongfeng. A Method for solving the structural interval finite element equations[J]. Engineering Mechanics, 2010, 27(4): 79-83.
[13] 王登刚, 李杰. 计算具有区间参数结构特征值范围的一种新方法[J]. 计算力学学报, 2004, 21(1): 56-61.
   Wang Denggang, Li Jie. A new method for computing the eigenvalues bounds of structures with interval parameters[J]. Chinese Journal of Computational Mechanics, 2004, 21(1): 56-61.
[14] Narasimha Marakala, Appu Kuttan K K, Ravikiran Kadoli. Thermally induced vibration of a simply supported beam using finite element method[J]. International Journal of Engineering Science, 2010, 2(12): 7874-7879.
[15] 范绪箕. 高速飞行器热结构分析与应用[M]. 北京: 国防工业出版社, 2008.
Fan Xuji. Thermal structures analysis and applications of high speed vehicles[M]. Beijing: National Defence Industrial Press, 2008.
[16] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.
   Wang Xucheng. Finite element method[M]. Beijing: Tsinghua University Press, 2003.
[17] 尹益辉, 郝志明, 陈裕泽, 苏毅. 不同材料参数薄板振动中的热力耦合效应[J]. 强激光与粒子束, 2001, 13(2): 142-146.
    Yin Yihui , Hao Zhiming , Chen Yuze , Su Yi. Thermo-mechanical coupling effects in vibrations of plates with different properties[J]. High Power Laser And Particle Beams, 2001, 13(2): 142-146.
[18] 王琪, 吉庭武, 谢公南, 张卫红. 轻质热防护系统波纹夹芯结构热力耦合分析[J]. 应用数学和力学, 2013, 34(2): 172-182.
    Wang Qi, Ji Tingwu, Xie Gongnan, Zhang Weihong. Structural Analysis of Corrugated-Core Sandwich Panels for Lightweight Thermal Protection System[J]. Applied Mathematics and Mechanics, 2013, 34(2): 172-182.

PDF(1313 KB)

Accesses

Citation

Detail

段落导航
相关文章

/