提出隔震结构的地震损伤模型,并采用概率密度演化理论分析隔震结构地震损伤指数的概率统计特征,为隔震结构性态目标的量化提供依据。考虑隔震支座的压剪相关性和拉压性能的差异,给出隔震层的损伤指数模型,再利用Park-Ang损伤指数描述上部结构的损伤状况,建立隔震体系的损伤指数模型;将隔震结构简化为双质点模型,采用Bouc-Wen模型和刚度退化的Bouc-Wen模型分别描述隔震层与上部楼层的滞变特性,建立隔震结构的状态方程,应用四阶龙格-库塔方法迭代求解求解出隔震结构的位移反应和滞变耗能,进而求解隔震结构的损伤指数;建立隔震结构损伤指数的概率密度演化方程,求解损伤指数的统计特征和概率密度函数,然后根据极值分布理论计算损伤指数超过不同性能水准的可靠度。本研究为以可靠度为理论基础的隔震结构损伤分析提供了可借鉴的方法。
Abstract
The seismic damage model of base isolated structure is proposed. The stochastic characteristics of damage index of base isolated structure are analyzed by the probability density evolution method. This work provides the basis for performance objective quantification of base isolated structure. The damage index model of the isolation story is proposed by considering the compression-shear correlation and tension-compression difference of isolators. The Park-Ang damage index is used to describe damage status of superstructure. The damage index model of base isolated structure is established. The simplified two masses calculating model of base isolated structure is established. The Bouc-Wen model is used to simulate the isolation layer and the stiffness degradation of Bouc-Wen model is used to simulate the superstructure. The state equation of base isolated structure is established. The displacement response and the hysteresis energy of base isolated structure are iterative solved by four-order Runge-Kutta method. As a result, the damage index of base isolated structure can be got. The probability density evolution equation of base isolated structure is established. The stochastic characteristics and probability density function of damage index are obtained. The reliabilities of damage index not exceed different performance levels are calculated by extreme value distribution theory. The reliabilities of base isolated structure impacted by different yield force ratios and period ratios are also analyzed. This study provides a reference method for performance based seismic design of base isolated structure on basis of reliability theory.
关键词
可靠度 /
隔震结构 /
损伤指数
{{custom_keyword}} /
Key words
reliability /
base isolated structure /
damage index
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Park Y J, Ang A H S. Mechanistic seismic damage model for reinforce concrete[J]. Journal of Structural Engineering, ASCE, 1985, 111(4): 722 - 739.
[2] Bozorgnia Y, Bertem V V. Damage spectra characteristics and applications to seismic reduction[J]. Journal of Structural Engineering , 2003,129(10):1330-1332.
[3] Chai Y H,Romstall K M, Bird S M. Energy-based linear damage model for high-intensity seismic loading[J]. Journal of Structural Engineering, 1995 121(5): 857-858.
[4]王东升,司炳君等. 改进的Park-Ang地震损伤模型及其比较[J].工程抗震与加固改造,2005,Vol.27:138-143.(Wang dongsheng, Si bingjun ,et al.A Comparative Study of Modified Park-Ang Model and Park-Ang Model for Structural Seismic Damage Evaluation[J]. Earthquake Resistant Engineering Retrofitting, 2005,Vol.27:138-143.)
[5]陈林之,蒋欢军等. 修正的钢筋混凝土结构Park-Ang损伤模型[J]. 同济大学学报,2010,38(8) : 1103-1107.
(CHEN Linzhi, JIANG Huanjun, LU Xilin. Modified Park-Ang Damage Model for Reinforced Concrete Structures[J]. JOURNAL OF TONGJI UN 1VERSII'Y (NATURAL SC IENCE), 2010,38(8) : 1103-1107.)
[6] Park S W, Wen W P, Cooper J D, et al. A Comparative Study of US-Japan Seismic; Design of Highway Bridges: II. Shake Table Model Tests[ J].Earthquake Spectra, 2003, 19(4):933-958.
[7]瞿伟廉,陶牟华,李桂青. 基底滞后隔震层对建筑结构随机地震反应的控制[J]. 应用力学学报,1989,6(3) : 69-78. ( QU Weilian,TAO Mouhua,LIGuiqing. Control for earthquake responses of architectural structures with hysteresis isolation systems in base[J]. Chinese Journal of Applied Mechanics,1989,6( 3) : 69-78. ( in Chinese) )
[8]杜永峰,张恩海,李慧,等. 隔震结构“小震不坏”的动力可靠度分析[J]. 地震工程与工程振动,2006,24( 5) : 84-89. ( DU Yongfeng,ZHANG Enhai,LI Hui,et al. Dynamic reliability of isolated structure for ‘undamaged under minor earthquake’[J].Earthquake Engineering and Engineering Vibration,2006,24( 5) : 84-89. ( in Chinese) )
[9]李杰,陈建兵. 随机振动理论与应用新进展[M].上海: 同济大学出版社,2009: 60-94. ( LI Jie,CHEN Jianbing. Advances in theory and applications of random vibration[M]. Shanghai: Tongji University Press,2009: 60-94. ( in Chinese) )
[10]彭勇波,陈建兵,刘伟庆,等. 隔震结构的随机地震反应与抗震可靠度评价[J]. 同济大学学报,2008,36( 11) : 1457-1461. ( PENG Yongbo, CHEN Jianbing, LIU Weiqing, et al. Stochastic seismic response and aseismic reliability assessment of baseisolated structure[J]. Journal of Tongji University,2008,36( 11) : 1457-1461. ( in Chinese) )
[11]Bertero R D, Bertero V V. Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach [J]. Earthquake Engineering and Structural Dynamics. 2002, 31(3): 627–52.
[12]欧进萍,王光远. 结构随机振动[M].北京: 高等教育出版社,1998: 295-301.
( OU Jinping,WANG Guangyuan.Random vibration of structures [M].Beijing: High Education Press,1998: 295-312. ( in Chinese) )
[13]陈建兵, 李杰. 随机结构动力可靠度分析的极值概率密度方法[J]. 地震工程与工程振动, 2004, 24(6): 39–44.(Chen Jianbing, Li Jie. The extreme value probability density function based method for dynamic reliability assessment of stochastic structures[J]. EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION,2004, 24(6): 39–44. ( in Chinese))
[14]陈建兵, 李杰. 结构动力随机反应的极值分布[J]. 福州大学学报(自然科学版), 2005, 33(Supp.): 11–15.(Chen Jianbing, Li Jie. The extreme value distribution of dynamic stochastic response of structures[J]. Journal of Fuzhou University(Natural Science),, 2005, 33(Supp.): 11–15. ( in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}