基于解析模态分解和希尔伯特变换的模态参数辨识新方法

李晶1,曹登庆1,刘绍奎2,余天虎1,王庆洋1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 34-39.

PDF(2061 KB)
PDF(2061 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 34-39.
论文

基于解析模态分解和希尔伯特变换的模态参数辨识新方法

  • 李晶1,曹登庆1,刘绍奎2,余天虎1,王庆洋1
作者信息 +

A new method for the modal parameters identification based on analytical modal decomposition and Hilbert transforms

  • LI Jing 1, CAODeng-qing1, LIU Shao-kui 2, YU Tian-hu 1, WANG Qing-yang 1
Author information +
文章历史 +

摘要

针对航天器结构低频、密频的模态参数辨识问题,提出一种将解析模态分解(AMD)与希尔伯特变换(HT)相结合的模态辨识方法(AMD+HT),根据结构上任意一点的脉冲响应信号,对系统结构的频率和模态阻尼比进行参数识别。以箱型卫星模型为例,分别对固定状态下卫星帆板和卫星整体结构的低阶模态进行模态辨识,并与LMS数据采集系统分析结果和ANSYS有限元仿真结果对比,验证了该方法对低频、密频结构模态辨识的正确性和优越性。

Abstract

In order to identify the modal parameters of the spacecraft structures with low frequency, closely spaced modes, a new method based on analytical modal decomposition (AMD) and Hilbert transforms (HT) is proposed. The frequency and modal damping ratio of the structure are obtained by the impulse responses of the structure at any point. A satellite model composed of a central rigid body and two panels is taken as a typical example of spacecraft structures. The low-order modal parameters of a single panel and the satellite model at a fixed boundary condition are identified by this method. The comparison of the results obtained from the test data and the numerical simulation shows that the new method proposed in this paper is valid, especially in low frequency and closely spaced modes identification.

关键词

解析模态分解(AMD) / 希尔伯特变换(HT) / 低频 / 密频 / 模态阻尼比

Key words

 Analytical modal decomposition (AMD) / Hilbert transforms (HT) / Low frequency / Closely spaced modes / Modal damping ratio

引用本文

导出引用
李晶1,曹登庆1,刘绍奎2,余天虎1,王庆洋1. 基于解析模态分解和希尔伯特变换的模态参数辨识新方法[J]. 振动与冲击, 2016, 35(1): 34-39
LI Jing 1, CAODeng-qing1, LIU Shao-kui 2, YU Tian-hu 1, WANG Qing-yang 1. A new method for the modal parameters identification based on analytical modal decomposition and Hilbert transforms[J]. Journal of Vibration and Shock, 2016, 35(1): 34-39

参考文献

[1] 马兴瑞, 苟兴宇, 李铁寿, 等. 航天器动力学发展概况[J]. 宇航学报, 2000, 21(3): 1-5.
Ma Xing-rui, Gou Xing-yu, Li Tie-shou, et al. Development generalization of spacecraft dynamics [J]. Journal of Astronautics, 2000, 21(3): 1-5.
[2] 司洪伟, 李东旭, 陈卫东. 大挠性航天桁架结构动力学及其主动控制研究进展[J]. 力学进展, 2008, 38(2): 167-176.
Si Hong-wei, Li Dong-xu, Chen Wei-dong. Dynamic and active control of large flexible space truss: a review [J]. Advance in Mechanics, 2008, 38(2): 167-176.
[3] 赵寿根, 程伟, 孙国江, 等. 航天器动力学特性参数在轨辨识技术[J]. 北京航空航天大学学报, 2005, 31(9): 999-1003.
Zhao Shou-gen, Cheng Wei, Sun Guo-jiang, et al. Identification system to dynamic characteristics of on-orbit space vehicles. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(9): 999-1003.
[4] Piombo P A D, Fasana A, Marchesimllo S, et al. Modelling and identification of the dynamic response of a supported bridge. Mechanical systems and signal processing, 2000, 14(1): 75-89.
[5] 石志晓. 时频联合分析方法在参数识别中的应用[D]; 大连: 大连理工大学, 2005.
Shi Zhi-xiao. Application of joint time-frequency analysis method in parameter identification [D]. Dalian: Dalian University of Technology, 2005.
[6] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[7] Yang J N, Lei Y, Pan S, et al. System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes [J]. Earthquake engineering & structural dynamics, 2003, 32(9): 1443-1467.
[8] Chen J, Xu Y, Zhang R. Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT method [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(10): 805-827.
[9] 陈隽, 徐幼麟, 李杰.Hilbert-Huang变换在密频结构阻尼识别中的应用[J]. 地震工程与工程振动, 2003, 23(4): 34-42.
Chen Jun, Xu You-lin, Li Jie. Hilbert-Huang translation for damping ratio identification of structures with closed spaced modes of vibration [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(4): 34-42.
[10] Chen G, Wang Z. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components [J]. Mechanical Systems and Signal Processing, 2012(28): 258-279.
[11] 陈德成,杨靖波,白浩,等. 密频子空间的可控度与可观度[J]. 应用力学学报,2001, 18(2):15-19.
Chen De-cheng, Yang Jing-bo, Bai Hao, et al. The degree of controllability and observability of closed frequency subspace [J]. Chinese journal of applied mechanics, 2001, 18(2):15-19.

PDF(2061 KB)

Accesses

Citation

Detail

段落导航
相关文章

/