基于Lyapunov指数的管道超声导波小缺陷定位实验研究

武静 1,张伟伟 2,聂振华 1,马宏伟 1,3,杨飞 1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 40-53.

PDF(2203 KB)
PDF(2203 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 40-53.
论文

基于Lyapunov指数的管道超声导波小缺陷定位实验研究

  • 武静 1,张伟伟 2,聂振华 1,马宏伟 1,3 ,杨飞 1
作者信息 +

Experimental studies using Lyapunov exponents on crack location in pipes by ultrasonic guided wave

  • WU Jing1  ZHANG Wei-wei2   NIE Zhenhua1   MA Hong-wei1,3  YANG Fei 1
Author information +
文章历史 +

摘要

为了提高超声导波检测长距离管道中小缺陷的检测灵敏度,提出了基于杜芬方程最大Lyapunov指数的超声导波损伤定位方法。依据管道超声导波实测信号的采样频率、中心频率以及杜芬方程特性,设置检测系统参数,将待测信号作为杜芬方程外策动力扰动项输入杜芬方程中。通过比较杜芬系统在无信号输入和输入实测导波信号后,最大Lyapunov指数随策动力幅值F的变化,确定可用于识别导波信号的F值。利用移动窗函数给出了缺陷超声导波的波到时刻识别方法,从而给出了缺陷定位方法。实验研究表明,利用最大Lyapunov指数可有效提高超声导波的检测灵敏度。

Abstract

In order to improve the detection sensitivity of small crack location of long distance pipes, a novel detection method based on the maximum Lyapunov Exponents of Duffing system is proposed. According to the sampling frequency and center frequency of the measured ultrasonic guided wave signal and the characteristics of the Duffing chaotic oscillator, the parameters of the detection system are set up. The guided wave signals to be tested are inputted into the Duffing equation as the external turbulent driving force term. Based on comparing the curves, varying with the driving force amplitude F, of the maximum Lyapunov Exponents of Duffing system with the driving force amplitude F varying between the conditions that without input, inputted the measured guided wave signal, the appropriate value of F used to detect the guided wave is determined. Then a time-moving window function is constructed to locate the crack by moving the window along the measured signals. The experimental results show that the maximum Lyapunov Exponents can effectively improve the sensitivity of small crack detection.

关键词

最大Lyapunov指数 / 超声导波 / 损伤定位 / 杜芬检测系统

Key words

 the maximum Lyapunov Exponents / ultrasonic guided wave / damage location / Duffing detection system

引用本文

导出引用
武静 1,张伟伟 2,聂振华 1,马宏伟 1,3,杨飞 1. 基于Lyapunov指数的管道超声导波小缺陷定位实验研究[J]. 振动与冲击, 2016, 35(1): 40-53
WU Jing1 ZHANG Wei-wei2 NIE Zhenhua1 MA Hong-wei1,3 YANG Fei 1. Experimental studies using Lyapunov exponents on crack location in pipes by ultrasonic guided wave[J]. Journal of Vibration and Shock, 2016, 35(1): 40-53

参考文献

[1] ROSE J.L. Ultrasonic waves in solid media [M]. Cambridge University Press, 1999.
[2] Mazzotti, M., Marzani, A., Bartoli, I., et al. Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method[J]. International Journal of Solids and Structures, 2012. 49(18):2359-2372.
[3]     Aristégui, C., Lowe, M. J. S., Cawley, P. Guided waves in fluid-filled pipes surrounded by different fluids[J]. Ultrasonics, 2001, 39(5): 367-375
[4] Chillara, V.K., Lissenden, C.J. Analysis of second harmonic guided waves in pipes using a large-radius asymptotic approximation for axis-symmetric longitudinal modes[J].Ultrasonics,2013. 53(4):862-869.
[5] Beard, M., Lowe, M., Cawley, P. Ultrasonic guided waves for inspection of grouted tendons and bolts[J]. Journal of Materials in Civil Engineering, 2003. 15(3):212-218.
[6] Lee, J.-R., Jeong, H., Kong, C.-W. A time-of-flight mapping method for laser ultrasound guided in a pipe and its application to wall thinning visualization[J]. NDT & E International, 2011. 44(8):680-691.
[7] Liu, Y., Li, Z., Gong, K. Detection of a radial crack in annular structures using guided circumferential waves and continuous wavelet transform[J]. Mechanical Systems and Signal Processing, 2012. 30:157-167.
[8] Siqueira, M., Gatts, C., Da Silva, R., et al. The use of ultrasonic guided waves and wavelets analysis in pipe inspection[J]. Ultrasonics, 2004. 41(10):785-797.
[9] 张伟伟. 基于模态分析和应力波技术的结构裂纹识别方法研究[D]. 暨南大学博士论文, 2010.
ZHANG Wei-wei, Studies on crack identification methodalogy for structture based on mode analysis and stress wave [D]. Guangzhou: Jinan University, 2010.
[10] Liu, B., Tang, L., Wang, J., et al. 2-D defect profile reconstruction from ultrasonic guided wave signals based on QGA-kernelized ELM[J]. Neurocomputing, 2014. 128:217-223.
[11] D. L. Birx,S. J. Pipenberg. Chaotic oscillators and complex mapping feed forward networks (CMFFNS) for signal detection in noisy environments[A]. IEEE International Joint Conference on Neural Networks[C]. USA: IEEE, 1992. 2:881-888.
[12] 李健, 周激流, 孙涛,等. 自相关级联混沌振子法实现随相弱正弦信号的检测[J]. 四川大学学报( 工程科学版), 2010. 42(1):191-195.
LI Jian, ZHOU Jiliu, SUN Tao, et al. Detection of phase randomly distributed weak sinusoidal signal based on autocorrelation joint with chaotic oscillator method[J].Journal of Sichuan University. 2010. 42(1):191-195.
[13] 张淑清, 蔡文龙, 吕江涛,等. 一种新型频率测量方法的研究[J].传感技术学报. 2005. 18(3):470-472.
ZHANG Shuqing,CAI Wenlong, LU Jiangtao,.et al. Study of New Methods about Frequency Measurement[J]. 2005. 18(3):470-472.
[14] 邹珺, 武新军, 徐江. 基于杜芬混沌振子的磁致伸缩导波信号识别[J].无损检测., 2008. 30(9):600-602.
ZOU Jun, WU Xin-jun, XU Jiang, et al. Identification of magnetostrictive guided wave signal based on Duffing chaotic oscillators[J]. Nondestructive Testing, 2008.30(9): 600-602 .
[15] 张伟伟, 马宏伟. 利用混沌振子系统识别超声导波信号的仿真研究[J].振动与冲击, 2012. 31(9):15-20.
ZHANG Wei-wei, MA Hong-wei. Simulations on ultrasonic guided wave identification using chaotic oscillator[J]. Journal of Vibration and Shock, 2012. 31(9): 15-20.
[16] 聂春燕, 石要武. 基于互相关检测和混沌理论的弱信号检测方法研究[J].仪器仪表学报.2001. 22(001)
NIE Chun-yan, SHI Yao-wu. The reaserch of weak signal detection[J]. Chinese Journal of Scientific Instrument. 2001. 22(001).
[17] 武静. 基于杜芬方程的超声导波检测方法研究[D]. 太原科技大学硕士论文,2014.
WU Jing.A ultrasonic guided wave inspection based on Duffing equation[D]. Taiyuan University of Science & Technology.2014.
[18] Alan WOLF, Jack B.SWIFT, L.SWINNE, H. DETERMINING LYAPUNOV EXPONENTS FROM A TIME SERIES[J]. Physica 16D. 1985:285-317.
[19] Hai-Wu, R., Xiang-Dong, W., Wei, X., et al. Response of Duffing one-sided constraint oscillator to combined deterministic harmonic and random excitation[J]. 2008.
[20] 刘秉正, 彭建华. 非线性动力学[M]. 高等教育出版社, 2007:406-408.
LIU Bing-zheng, PENG Jian-hua. Nonlinear Dynamics[M]. Higher Education Press, 2007:406-408.
[21] 武静, 张伟伟, 马宏伟. 利用Lyapunov指数实现超声导波检测的实验研究[J]. 振动与冲击, 2014.33(24):82-87.
WU Jing, ZHANG Wei-wei, MA Hong-wei.              Experimental studies on ultrasonic guided wave inspection using Lyapunov exponents[J]. Journal of Vibration and Shock, 2014.33(24):82-87.

PDF(2203 KB)

Accesses

Citation

Detail

段落导航
相关文章

/