复杂工况下的大型风力机气动弹性响应和尾迹数值分析研究

曹九发,柯世堂,王同光

振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 46-53.

PDF(2384 KB)
PDF(2384 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 46-53.
论文

复杂工况下的大型风力机气动弹性响应和尾迹数值分析研究

  • 曹九发,柯世堂,王同光
作者信息 +

Numerical analysis investigation of aero-elastic responses and wake of the large scale wind turbine under complicated conditions

  • Cao Jiufa, Ke Shitang, Wang Tongguang
Author information +
文章历史 +

摘要

在复杂工况下,大型风力机受到载荷更加严重,导致风力机气动和结构耦合响应问题更加明显。本文主要针对稳态偏航、动态偏航、风剪切和随机风速场等复杂工况,采用非定常自由涡尾迹方法计算尾迹形状和气动载荷,加入了复杂工况的模型,进行了动态失速模型和三维旋转效应模型修正。在考虑气动载荷、惯性载荷和重力载荷影响下,采用有限元法结合模态法建立起风力机解耦动力学方程,并且通过Newmark方法进行数值求解该方程。实现了复杂工况数值模拟计算,比较不同复杂工况的气动弹性响应结果。最后,得出大型风力机在复杂工况下的气动性能、载荷、动态响应和尾迹叶尖涡线特性,并计算出风力机在复杂工况下的迟滞时间。这为推进自由涡尾迹方法应用于大批工况载荷计算,以及提高大型风力机载荷计算精度和设计水平等具有重要意义。

Abstract

The large scale wind turbines suffer more serious unsteady loads under complicated conditions, which results in more obvious aero-elastic interaction. For steady yaw, dynamic yaw, wind shear and stochastic wind field, the free vortex method is used to calculate aerodynamic, and the dynamic stall model and the three dimension stall delay model are taken into account. At the same time, included the aerodynamic load, inertial load and gravity load, finite element method combines with modal method for building the decoupled dynamic function, which is solve through Newmark method. After the complicated conditions are calculated, the aero-elastic dynamic responses are analyzed for difference complicated conditions. Finally, the aerodynamic performance, load, dynamic responses and tip vortex line characteristics are found under the complicated condition. It is significant for pushing on the application of free vortex method on the loads of mass conditions calculations of the wind turbine, and improving the loads calculations accuracy and design quality of large scale wind turbines.

关键词

自由涡尾迹 / 风剪切 / 动态偏航 / 随机风速场 / 动态响应

Key words

free wake method / wind shear / dynamic yaw / stochastic wind field / dynamic response

引用本文

导出引用
曹九发,柯世堂,王同光. 复杂工况下的大型风力机气动弹性响应和尾迹数值分析研究[J]. 振动与冲击, 2016, 35(1): 46-53
Cao Jiufa, Ke Shitang, Wang Tongguang . Numerical analysis investigation of aero-elastic responses and wake of the large scale wind turbine under complicated conditions[J]. Journal of Vibration and Shock, 2016, 35(1): 46-53

参考文献

[1] Rijs R P P, Jacobs P, Smulders P T. Parameter study of the performance of slow running rotors[J]. Wind Energy and Industrial Aerodyn.1992, 39(1-3):95-103.
[2] T.Burton,D.Sharpe,N.Jenkins and E.Bossanyi.Wind Energy Handbook[M].2005.
[3] Wang TG. Unsteady aerodynamic modeling of horizontal axis wind turbine performance[D]. Glasgow: University of Glasgow, 1999.
[4] 王芳,王同光. 基于涡尾迹方法的风力机非定常气动特性计算[J].太阳能学报.2009.30(9),1286-1291.
Wang Fang, Wang Tongguang. Wind turbine unsteady aerodynamic performance prediction based on the vortex wake method. ACTA  Energlae Solaris Sinica, 2009, 30(9): 1286―1291. (in Chinese).
[5] Chaviaropoulos PK, Hansen MOL. Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver [J]. Journal of Fluids Engineering. 2000, 122(2): 518-548.
[6] Sandersen B, Pijl SP, Koren B. Review of computational fluid dynamics for wind turbine wake aerodynamics [J]. Wind Energy, 2011, 14(7): 799-819.
[7] Vermeer L J,Sorensen J N ,Crespo A.Wind turbine aerodynamics[J] .Progress in Aerospace Sciences, 2003(39) :467-510.
[8] Coton FN, Wang T. The prediction of horizontal axis wind turbine performance in yawed flow using an unsteady prescribed wake model [J]. Proceedings of the Institution of Mechanical Engineers, Part A, Journal of Power and Energy. 1999, 213: 33-43.
[9] Wang T, Coton FN. An unsteady aerodynamic model for HAWT performance including tower shadow effects [J]. Wind Engineering. 1999. 23: 255-268.
[10] Sebastian T, Lackner MA. Development of a free vortex wake method code for offshore floating wind turbines [J]. Renewable Energy, 2012, 46: 269-275.
[11] Zhou WP, Tang SL, Lü H, Computation on aerodynamic performance of horizontal axis wind turbine based on time-marching free vortex method [J]. Chin.Soc.for Elec.Eng., 2011, 31(29):124-130.
[12] 许波峰.基于涡尾迹方法的风力机气动特性研究[D]. 南京:南京航空航天大学,2013.
Xu Bofeng. Study of wind turbine aerodynamic characteristics based on vortex wake methods. Nanjing: Nanjing university of aeronautics and astronautics, 2013.
[13] 柯世堂, 王同光, 赵林, 葛耀君. 风力机风振背景、共振响应特性及耦合项分析[J]. 中国电机工程学报, 2013, 33(26): 101-108
Ke Shitang, Wang Tongguang, Zhao Lin, Ge Yaojun. Background, Resonant Components and Coupled Effect of Wind-induced Responses on Wind Turbine Systems[J]. Proceeding of the CSEE, 2013,V33(26): 101-108
[14] 任勇生, 张明辉. 水平轴风力机叶片的弯扭耦合气弹稳定性研究[J]. 振动与冲击, 2010, 29(7): 196-200.
Ren Yongsheng, Zhang Minghui. Aeroelastic stability study on coupled flutter for horizontal axis wind turbine blades[J]. Journal of Vibration and Shock, 2010, 29(7): 196-200.
[15] Martin O. L. Hansen. Aerodynamics of wind turbines[M], Second edition ,Earthscan,2008.
[16] Schiehlen W. Multibody system dynamics: Roots and perspectives[J]. Multibody System Dynamics, 1997, 1: 149-188.
[17] Du Z, Selig MS. A 3-D stall delay model for horizontal axis wind turbine performance prediction. AIAA-98-0021, 1998.
[18] T. Kitagawa, T. Nomura. A wavelet-bassed method to generate artificial wind fluctuation data[J]. Journal of wind engineering and industrial aerodynamics, 2003, 91,943-964.
[19] Hand MM, Simms DA, Fingersh LJ, et al. Unsteady           aerodynamics experiment Phases Ⅵ: Wind tunnel test configurations and available data campaigns. Golden: National Renewable Energy Laboratory, NREL/TP-500-29955, 2001.

PDF(2384 KB)

Accesses

Citation

Detail

段落导航
相关文章

/