惯性边界下带钢的非线性振动分析

高崇一1,杜国君1,李建雄2,胡发科1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 5-10.

PDF(1343 KB)
PDF(1343 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 5-10.
论文

惯性边界下带钢的非线性振动分析

  • 高崇一1,杜国君1,李建雄2,胡发科1
作者信息 +

Analysis of Nonlinear Vibration of Strip with Inertial Boundary Conditions

  • GAO Chong-yi1, DU Guo-jun1, LI Jian-xiong2,HU Fa-ke1
Author information +
文章历史 +

摘要

根据连轧机轧制过程中带钢与轧辊的运动机理,将相邻两机架间的带钢简化为轴向运动的Euler梁,轧辊简化为定轴转动的惯性元件,建立Euler梁在惯性边界下的非线性振动力学模型。基于哈密顿原理建立轴向运动Euler梁的纵向和横向非线性振动微分方程,利用Kantorovich时间平均法简化运动方程和边界条件,并采用修正迭代法求解运动方程。最后通过数值计算获得了Euler梁非线性振动的幅频响应曲线,并讨论惯性边界条件下的轴向运动速度、长度和轧辊的转动惯量对Euler梁振动特性的影响。研究结果可为控制和分析连轧过程中带钢垂直振动提供重要的理论参考。

Abstract

According to the movement mechanism of strip and rollers in the rolling process of tandem mill, the strip between stands was simplified to axially moving Euler beam and the rollers were simplified to the inertia component on the fixed axis rotation, namely inertial boundary conditions. Nonlinear vibration mechanical model of the Euler beam with inertial boundary conditions was established. The longitudinal and lateral motion equations of the Euler beam were derived due to the Hamilton's principle. The Kantorovich averaging method was used to simplify the motion equations and the inertial boundary, and the modified iteration method was employed to solve the motion equations. Finally, based on the results of numerical analysis, the amplitude frequency response curves of the Euler beam were obtained, and the influence of the axial velocity, the length and the rotational inertia of the roller on the vibration performance of Euler beam on condition of inertial boundary. The results may provide an important theoretical reference to control and analyze the vertical vibration of strip in the continuous rolling process.
 

关键词

Euler梁 / 惯性边界 / 带钢 / 垂直振动 / 修正迭代法

Key words

Euler beam / inertial boundary / strip / vertical vibration / modified iteration method

引用本文

导出引用
高崇一1,杜国君1,李建雄2,胡发科1. 惯性边界下带钢的非线性振动分析[J]. 振动与冲击, 2016, 35(1): 5-10
GAO Chong-yi1, DU Guo-jun1, LI Jian-xiong2,HU Fa-ke1. Analysis of Nonlinear Vibration of Strip with Inertial Boundary Conditions[J]. Journal of Vibration and Shock, 2016, 35(1): 5-10

参考文献

[1] 侯福祥, 张 杰, 曹建国, 等, 带钢冷轧机振动问题的研究进展及评述[J]. 钢铁研究学报, 2007, 19(10): 6-11.
HOU Fu-xiang, ZHANG Jie, CAO Jian-guo, et al. Review of chatter studies in cold rolling[J]. Journal of Iron and Steel Research, 2007, 19(10): 6-11.
[2] Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beam using four engineering theories[J]. Journal of Sound and Vibration, 1999, 225(5): 935-988.
[3] 刘明哲, 孙建亮, 彭艳, 等. 连轧过程运动带钢稳定性研究[J]. 冶金设备, 2009, (5): 24-28.
LIU Ming-zhe, SUN Jian-liang, PENG Yan, et al. Stability research of moving strip in the rolling process[J]. Metallurgical Equipment, 2009, (5): 24-28.
[4] Sun J L, Peng Y, Liu H M. Non-linear vibration and Stability of Moving Strip With Time- Dependent Tension in Rolling Process[J]. Journal of Iron and Steel Research, International, 2010, 17(6): 11-15, 20.
[5] Bar A, Swiatoniowski A, Interdependence between the rolling speed and non-linear vibrations of the mill system[J]. Journal of Materials Processing Technology, 2004, 155-156: 2116-2121.
[6] Miranker W L. The wave equation in a medium in motion[J]. IBM Journal of Research and Development, 1960, 4: 36-42.
[7] Mote C D Jr. Stability of systems transporting accelerating axially moving materials[J]. Journal of Dynamic Systems Measurement and Control Transactions, 1975, 97: 96-98.
[8] 陈树辉, 黄建亮. 轴向运动梁横向非线性振动的内部共振研究[J]. 力学学报, 2005, 37(1): 57-63.
CHEN Shu-hui, HUANG Jian-liang. Study of the laterally nonlinear vibration of axially moving beams[J]. Acta Mechanics Sinica, 2005, 37(1): 57-63.
[9] Suweken G, Van Horssen W T. On the transversal vibrations of a conveyor belt with a low and time-varying velocity, Part II: the beam like case[J]. Journal of Sound and Vibration, 2003, 267(12): 1007-1027.
[10] 王波, 陈立群. 微分求积法处理轴向变速黏弹性梁混杂边界条件[J]. 振动与冲击, 2012, 31(5): 87-91.
WANG Bo, CHEN Li-qun. Treating hybrid boundary condition of an Aaxially accelerating viscoelastic beam via a differential quadrature scheme[J]. Journal of Vibration and Shock, 2012, 31(5): 87-91.
[11] 王洋, 许飞, 李勇, 等. 带钢-辊子-柔性支承混杂系统动力学建模与耦合振动研究[J]. 振动工程学报, 2013, 26(4): 599-607.
WANG Yang, XU Fei, LI Yong, et al, Dynamic modeling and coupling vibration analysis of hybrid systems consisting of strip rolls and flexible supports[J]. Journal of Vibration Engineering, 2013, 26(4): 599-607.
[12] 杨晓东,陈立群. 粘弹性轴向运动梁的非线性动力学行为[J]. 力学季刊, 2005, 26(1):157-162.
YANG Xiao-dong, CHEN Li-qun. Nonlinear dynamical behaviors of an axially moving visco-elastic beam[J]. Chinese Quarterly of Mechanics, 2005, 26(1):157-162.
[13] Chen L Q, Yang X D. Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models[J]. International Journal of Solids and Structures, 2005, 42: 37-50.
[14] 李东, 刘人怀. 修正迭代法在波纹圆板非线性振动问题中的应用[J]. 应用数学和力学, 1990, 11(1): 10-15.
LI Dong, LIU Ren-huai, Application of modified iteration algorithm in non-linear vibration problem of circular plate with shallow[J]. Applied Mathematics and Mechanics, 1990, 11(1): 10-15.
[15] 杜国君. 夹层圆板的大幅度振动[J]. 应用数学和力学, 1994, 15(5): 435-445.
DU Guo-jun. Large amplitude vibration on circular sandwich plate[J]. Applied Mathamatics and Mechanics, 1994, 15(5): 435-445.
[16] 高崇一, 杜国君, 张忠健. 考虑多间隙影响的轧机主传动系统扭振分析[J]. 机械工程学报, 2014, 50(3): 130-136.
GAO Chong-yi, DU Guo-jun, ZHANG Zhong-jian, Torsional vibration analysis of the main drive system of a rolling mill with impact of multi-clearance[J]. Journal of Mechanical Engineering, 2014, 50(3): 130-136.

PDF(1343 KB)

Accesses

Citation

Detail

段落导航
相关文章

/