150MD24Z7.5高速电主轴多场耦合模型与动态性能预测

张丽秀 阎铭 吴玉厚 陆峰

振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 59-65.

PDF(2647 KB)
PDF(2647 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 59-65.
论文

150MD24Z7.5高速电主轴多场耦合模型与动态性能预测

  • 张丽秀 阎铭 吴玉厚 陆峰
作者信息 +

Model coupled multi-physics and prediction of dynamic performancefor 150MD24Z7.5 motorized spindle

  • ZHANG Lixiu, YAN Ming, WU Yuhou, LU Feng
Author information +
文章历史 +

摘要

电主轴是机电一体化产品,充分考虑并预测其动态特性是机床主轴系统优化设计的前提。本文基于电主轴内部磁场、电场、温度场、结构场间的耦合关系,建立了150MD24Z7.5高速电主轴多场耦合有限元模型,通过电主轴电机电磁损耗及轴承摩擦生热计算,仿真电主轴温度场及结构场变化,讨论电主轴热态特性与振动特性之间耦合关系,分析电主轴温升热膨胀后气隙变化对振动特性的影响并通过实验加以验证。研究结果表明,电主轴温升形变对振动幅值影响较大,其中由气隙变化引起的电磁力幅值增加12.1%。利用该多场耦合模型可预测电主轴振动幅值,预测误差为10.2%。

Abstract

Motorized spindle is product of mechatronics. Its dynamic performance considered and predicted is the precondition for the optimization design of machine tool spindle system. Based on the coupling relationship among magnetic field,electric field,temperature field and structure field of motorized spindle, this paper establishes finite element model coupled multi-physics for 150MD24Z7.5 motorized spindle. By calculating electromagnetic loss and bearing friction heat, the temperature field and structure of motorized spindle is simulated, and the coupling relationship between thermal characteristics and vibration characteristics of motorized spindle is discussed. The effect of air-gap on the vibration characteristics by thermal deformation is analyzed and verified by experiment. The results show that thermal deformation influences greater on vibration amplitude, electromagnetic force amplitude increases by 12.1% caused by the change of air-gap. With the model coupled multi-physics can predict the vibration amplitude for motorized spindle and the prediction error is 10.2%.

关键词

电主轴 / 耦合 / 预测 / 动态性能

Key words

Motorized Spindle / Coupling / Prediction / Dynamic Performance

引用本文

导出引用
张丽秀 阎铭 吴玉厚 陆峰. 150MD24Z7.5高速电主轴多场耦合模型与动态性能预测[J]. 振动与冲击, 2016, 35(1): 59-65
ZHANG Lixiu, YAN Ming, WU Yuhou, LU Feng. Model coupled multi-physics and prediction of dynamic performancefor 150MD24Z7.5 motorized spindle[J]. Journal of Vibration and Shock, 2016, 35(1): 59-65

参考文献

[1] Demetriades G D, De La Parra H Z, Andersson E,e. al. A real-time thermal model of a permanent-magnet synchronous motor[J]. IEEE Transactions on Power Electronics. 2010, 25(2): 463-474.
[2] T. Holkup, H. Cao, P. Kola ´ r, Y. Altintas, J. Zeleny. Thermo-mechanical model of spindles[J]. CIRP Annals - Manufacturing Technology. 2010, 59: 365-368.
[3] 芮执元,王志强,周亚敏. 热变形对电主轴电机转子与主轴过盈配合的影响[J].机械与电子.2011,(7): 3-5.
RUI Zhi-yuan, WANG Zhi-qiang, ZHOU Ya-min. Effect of thermal deformation to the interference fit between the motor spindle's rotor and spindle[J]. Machinery & Electronics.2011, (7): 3-5.
[4] Huang Kun-Fang, Juan Yu-Ling, Tang Chia-Hui, Chang Ching-Feng,C. Tsair-Rong. A control scheme of thermal growth compensator for motorized spindles[J]. ICIC Express Letters. 2011, 5(9A): 3101-3108.
[5] E. Creighton, A. Honegger, A. Tulsian, D. Mukhopadhyay. Analysis of thermal errors in a high-speed micro-milling spindle[J]. International Journal of Machine Tools & Manufacture. 2010, 50: 386-393.
[6] 于翔. 主轴系统热变形分析[J]. 应用能源技术. 2008,(10):47-50.
YUXiang. Research and Analysis of the Thermal Deformation of the Spindle System[J]. Applied Energy Technology. 2008,(10):47-50.
[7] E. Abele, Y. Altintas, C. Brecher. Machine tool spindle units[J]. CIRP Annals- Manufacturing Technology. 2010, 59: 781-802.
[8] 何俊,赖玉活,罗锡荣等. 基于 ANSYS Workbench 的数控车床主轴系统热-结构耦合分析[J]. 组合机床与自动化加工技术. 2011 ,(7): 19-22.
HE Jun, LAI Yu-huo, LUO Xi-rong, et al. Thermal-structural coupling analysis of CNC lathe spindle system based on ANSYS Workbench. [J]. Modular Machine Tool & Automatic Manufacturing Technique. 2011 ,(7): 19-22.
[9] 谢黎明,邵宽平,靳岚,张海杰.高速电主轴的热变形研究[J].机械制造.2011, 49(559): 41-43.
XIE Li-ming, SHAO Kuan-ping, QIN Lan, et al. Research on Thermal Deformation of Motorized Spindle[J]. Machinery.2011, 49(559): 41-43.
[10] 王明权,易传云. 划片机气静压电主轴热变形的有限元分析[J]. 电子工业专用设备.2007,(147): 39-44.
Wang Ming-quan, Yi Chuan-yun. FEA of thermal deformation for air spindle of dicing saw[J]. Equipment for Electronic Products Manufacturing. 2007,(147): 39-44.
[11] Zverev IA, Eun IU, Hwang Y Chung W Lee C. An Elastic Deformation Model of High Speed Spindle Units[J]. International Journal of Precision Engineering and Manufacturing. 2006(7) : 39-46.
[12] Bossmanns B, JAY F T. Thermal model for high speed motorized spindles[J]. International Journal of Machine Tools and Manufacture, 1999,39: 1345-1366.
[13] Jeong-Du Kim, Igor Zverv, Keon-Beom Lee. Thermal Model of High-Speed Spindle Units[J]. Intelligent Information Management. 2010, 2: 306-315.
[14] E. Uhlmanna, J. Hua. Thermal modeling of a high speed motor spindle[J]. CIRP Conference on High Performance Cutting 2012, 1(2012): 313-318
[15] Jedrzejewski J, Kowal Z, Kwasny W, Modrzycki W. Hybrid Model of High Speed Machining Centre Headstock[J]. CIRP Annals Manufacturing Technology; 2004, 53(1): 285-288
[16] 陈观慈,王黎钦,古乐,等.高速球轴承的生热分析[J].航空动力学报,2007(1): 163-168.
CHEN Guan-ci, WANG Li-qin , GU Le, et al. Heating analysis of the high speed ball bearing[J]. Journal of Aerospace Power,2007(1): 163-168.
[17] Bradley K, Cao W, Clare J, et al. Predicting inverter induced harmonic loss by improved harmonic injection[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2619-2624.
[18] Liu Ruifang, Mi C C, G.D. W, et al. Modeling of eddy-current loss of electrical machines and transformers operated by pulse-width-modulated inverters[J].IEEE Transactions on Magnetics, 2008, 44(8): 2021-2028.
[19] 王宝民,胡赤兵,孙建仁.高速电主轴热态特性的ANSYS仿真分析[J].制造技术与机床.2009, 35(1) : 28-31.
WANG Bao-min, HU Chi-bing, SUN Jian-ren, et al. Simulation analysis of thermal characteristics of high-speed motorized spindle by using ANSYS[J]. Journal of Lanzhou University of Technology.2009, 35(1) : 28-31.
[20] 陈小安, 张朋, 合烨, 等.高速电主轴轴向振动研究[J].振动与冲击,2014,33(20):70-74.
CHEN Xiao-an, ZHANG Peng,HE Ye, et al. Axial vibration of high-speed motorized spindles[J]. Journal of Vibration and Shock. 2014,33(20):70-74. 
[21] Chang Ching-Feng, Chen Jin-Jia. Vibration monitoring of motorized spindles using spectral analysis techniques[J]. Mechatronics, 2009, 19(9) : 726-734.

PDF(2647 KB)

Accesses

Citation

Detail

段落导航
相关文章

/