铣削过程颤振稳定性分析的研究进展

卢晓红 1,王凤晨 1,王华1,王鑫鑫 1,司立坤 1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 74-82.

PDF(864 KB)
PDF(864 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (1) : 74-82.
论文

铣削过程颤振稳定性分析的研究进展

  • 卢晓红 1,王凤晨 1,王华1,王鑫鑫 1,司立坤 1
作者信息 +

Research Review of Chatter Stability Analysis in Milling Process

  • LU Xiao-hong 1 WANG Feng-chen 1 WANG Hua1 WANG Xin-xin 1 SI Li-kun 1
Author information +
文章历史 +

摘要

综述铣削过程颤振稳定性分析的研究概况和进展。颤振建模和稳定性分析是该方法两个关键环节。依据颤振形成的物理条件,将其分为摩擦型颤振、振型耦合型颤振和再生型颤振。从切削过程的非线性和切削系统的非线性两方面,重点介绍再生型颤振的非线性建模的研究成果。稳定性分析方法根据对颤振模型的求解方法,分为频域法、离散法及数值法,概括了各个方法的特点、效果及适用工况。最后介绍了近来兴起的微细铣削研究领域中颤振稳定性分析的研究成果。由于其尺度效应,微细铣削加工具有独特的加工机理和特点,颤振建模中需考虑的因素与传统铣削多有不同,但稳定性分析方法仍大多沿用传统铣削中的方法。

Abstract

Literature on chatter stability analysis in milling process is reviewed. Chatter modeling and stability analysis is two key procedure of the method. The mechanisms leading to chatter can be classified as dry fiction effect, mode coupling effect and regenerative effect. Nonlinear regenerative chatter modeling is mainly introduced according to nonlinearity in cutting process and spindle-holder-tool system. Stability analysis is divided into three categories, i.e. frequency domain method, discretization method and numerical simulation method based on the way dynamic model is solved. The feature and applicable situation of each method is generalized. The research findings of chatter stability analysis during micro-milling are introduced in the end of the paper. Due to its size effect, micro-milling has its unique cutting mechanism and characteristics. Compared with milling, the factors considered in micro-milling chatter modeling are different and the methods of stability analysis are mostly similar.

关键词

铣削 / 颤振 / 稳定性分析 / 微细铣削

Key words

milling / chatter / stability analysis / micro-milling

引用本文

导出引用
卢晓红 1,王凤晨 1,王华1,王鑫鑫 1,司立坤 1. 铣削过程颤振稳定性分析的研究进展[J]. 振动与冲击, 2016, 35(1): 74-82
LU Xiao-hong 1 WANG Feng-chen 1 WANG Hua1 WANG Xin-xin 1 SI Li-kun 1 . Research Review of Chatter Stability Analysis in Milling Process[J]. Journal of Vibration and Shock, 2016, 35(1): 74-82

参考文献

[1] Tlusty J, Spacek L. Self-Excited Vibration in Machine Tools[M]. Prague, 1954.
[2] Sisson T R, Kegg R L. An Explanation of Low-Speed Chatter Effects[J]. Journal of Engineering for Industry. 1969, 91(4): 951.
[3] 刘习军,陈予恕. 机床速度型切削颤振的非线性研究[J]. 振动与冲击. 1999(02): 7-11.
LIU Xi-jun, CHEN Yu-shu. Nonlinear analysis of speed type cutting chatter of machine tools[J]. Journal of vibration and shock. 1999(02): 7-11
[4] 刘习军,王立刚,贾启芬. 一种由干摩擦引起的车床切削颤振[J]. 工程力学. 2005(01): 107-112.
LIU Xi-jun, WANG Li-gang, JIA Qi-fen. Cutting chatter of machine tools induced by dry friction[J]. Engineering Mechanics. 2005(01): 107-112.
[5] Tlusty J, Ismail F. Basic Non-Linearity in Machining Chatter[J]. CIRP Annals-Manufacturing Technology. 1981, 30(1): 299-304.
[6] Gasparetto A. Eigenvalue Analysis of Modecoupling Chatter for Machine-Tool Stabilization[J]. Journal of Vibration and Control. 2001(7): 181-197.
[7] Iturrospe A, Atxa V, Abete J M. State-Space Analysis of Mode-Coupling in Orthogonal Metal Cuttingunder Wave Regeneration[J]. International Journal of Adaptive Control and Signal Processing. 2007(47): 1583-1590.
[8] Huang C Y, Wang J. Mode Coupling Behavior in End Milling[M]. NEW YORK:AMER SOC MECHANICAL ENGINEERS, 2010, 875-884.
[9] Moradi H, Movahhedy M R, Vossoughi G, et al. Investigation of the Internal Resonance and Regenerative Chatter Dynamics in Nonlinear Milling Process[J]. Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2011, Vol 1, Pts a and B: 23Rd Biennial Conference On Mechanical Vibration and Noise. 2012: 141-150.
[10] 林洁琼,周晓勤,孔繁森,等. 刚度主轴方位对模态耦合再生切削系统动态响应谐参数的影响[J]. 振动与冲击. 2009(05): 63-68.
LIN Jie-qiong, ZHOU Xiao-qin, KONG Fan-sen, et al. Influence of orientations of principal stiffness axes on harmonic parameters of dynamic response in mode-coupled regenerative machining system[J]. Journal of vibration and shock. 2009(05):63-68.
[11] 吴雅. 机床切削系统的颤振及其控制[M]. 北京: 科学出版社, 1993.
[12] Stépán G, Kalmár-Nagy T. Nonlinear Regenerative Machine Tool Vibrations[C]. 1997.
[13] Balachandran B. Nonlinear Dynamics of Milling Processes[J]. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences. 2001, 359(1781): 793-819.
[14] Zhao M X, Balachandran B. Dynamics and Stability of Milling Process[J]. International Journal of Solids and Structures. 2001, 38(10): 2233-2248.
[15] Balachandran B, Zhao M X. A Mechanics Based Model for Study of Dynamics of Milling Operations[J]. Meccanica. 2000, 35(2): 89-109.
[16] 师汉民. 关于机床自激振动的一个非线性理论模型(第一部分)[J]. 应用力学学报. 1984(01): 1-14.
SHI Han-min. Nonlinear chatter theory of machine tools (part 1: the stablity of machine tool chatter amplitude) [J]. Journal of Applied Mechanics. 1984(01): 1-14.
[17] 师汉民. 关于机床自激振动的一个非线性理论模型(第二部份)[J]. 应用力学学报. 1984(02): 75-88.
SHI Han-min. Nonlinear chatter theory of machine tools (part 2: finite amplitude machine tool instability) [J]. Journal of Applied Mechanics. 1984(02): 75-88.
[18] Long X H, Balachandran B. Stability Analysis for Milling Process[J]. Nonlinear Dynamics. 2007, 49(3): 349-359.
[19] Long X H, Balachandran B, Mann B P. Dynamics of Milling Processes with Variable Time Delays[J]. Nonlinear Dynamics. 2007, 47(1-3): 49-63.
[20] Hanna N H, Tobias S A. A Theory of Nonlinear Regenerative Chatter[J]. ASME Journal of Engineering for Industry. 1974, 96: 247-255.
[21] Banihasan M, Bakhtiari-Nejad F. Chaotic Vibrations in High-Speed Milling[J]. Nonlinear Dynamics. 2011, 66(4): 557-574.
[22] Altıntaş Y, Budak E, Engin S. Analytical Stability Prediction and Design of Variable Pitch Cutters[J]. Journal of Manufacturing Science and Engineering. 1999, 121(2): 173-178.
[23] Budak E. An Analytical Design Method for Milling Cutters with Nonconstant Pitch to Increase Stability, Part 1: Theory[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme. 2003, 125(1): 29-34.
[24] Budak E. An Analytical Design Method for Milling Cutters with Nonconstant Pitch to Increase Stability, Part 2: Application[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme. 2003, 125(1): 35-38.
[25] Turner S, Merdol D, Altintas Y, et al. Modelling of the Stability of Variable Helix End Mills[J]. International Journal of Machine Tools and Manufacture. 2007, 47(9): 1410-1416.
[26] Sellmeier V, Denkena B. Stable Islands in the Stability Chart of Milling Processes Due to Unequal Tooth Pitch[J]. International Journal of Machine Tools & Manufacture. 2011, 51(2): 152-164.
[27] Otto A, Radons G. Frequency Domain Stability Analysis of Milling Processes with Variable Helix Tools[C]. 2012.
[28] Dombovari Z, Stepan G. The Effect of Helix Angle Variation On Milling Stability[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme. 2012, 134(0510155).
[29] Eksioglu C, Kilic Z M, Altintas Y. Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems[J]. Journal of Manufacturing Science and Engineering. 2012, 134(6): 61006.
[30] Dombovari Z, Altintas Y, Stepan G. The Effect of Serration On Mechanics and Stability of Milling Cutters[J]. International Journal of Machine Tools and Manufacture. 2010, 50(6): 511-520.
[31] Catania G, Mancinelli N. A Coupled Theoretical-Experimental Dynamical Model for Chatter Prediction in Milling Processes[J]. Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 1, Pts a and B. 2010: 175-184.
[32] 李勤良,汪博,赵斌,等. 考虑非线性迟滞力的机床颤振系统稳定性研究[J]. 机械工程学报. 2013(11): 43-49.
LI Qin-liang, Wang Bo, ZHAO Bin, et al. Research on the chatter stability of machine system taking the nonlinear hysteretic force into consideration[J]. Journal of Mechanical Engineering. 2013(11): 43-49.
[33] Gao S H, Meng G, Long X H. Study of Milling Stability with Hertz Contact Stiffness of Ball Bearings[J]. Archive of Applied Mechanics. 2011, 81(8): 1141-1151.
[34] Movahhedy M R, Mosaddegh P. Prediction of Chatter in High Speed Milling Including Gyroscopic Effects[J]. International Journal of Machine Tools and Manufacture. 2006, 46(9): 996-1001.
[35] Xiong G L, Yi J M, Zeng C, et al. Study of the Gyroscopic Effect of the Spindle On the Stability Characteristics of the Milling System[J]. Journal of Materials Processing Technology. 2003, 138(1): 379-384.
[36] Tian J, Hutton S G. Chatter Instability in Milling Systems with Flexible Rotating Spindles—a New Theoretical Approach[J]. Journal of Manufacturing Science and Engineering. 2001, 123(1): 1-9.
[37] Ertürk A, Budak E, özgüven H N. Selection of Design and Operational Parameters in Spindle–Holder–Tool Assemblies for Maximum Chatter Stability by Using a New Analytical Model[J]. International Journal of Machine Tools and Manufacture. 2007, 47(9): 1401-1409.
[38] Radulescu R, Kapoor S G, Devor R E. An Investigation of Variable Spindle Speed Face Milling for Tool-Work Structures with Complex Dynamics, Part 1: Simulation Results[J]. Journal of Manufacturing Science and Engineering. 1997, 119(3): 266-272.
[39] Radulescu R, Kapoor S G, Devor R E. An Investigation of Variable Spindle Speed Face Milling for Tool-Work Structures with Complex Dynamics, Part 2: Physical Explanation[J]. Journal of Manufacturing Science and Engineering. 1997, 119(3): 273-280.
[40] Takemura T, Kitamura T, Hoshi T, et al. Active Suppression of Chatter by Programmed Variation of Spindle Speed[J]. Annals of the CIRP. 1974, 23(1): 121-122.
[41] Sastry S, Kapoor S G, Devor R E. Floquet Theory Based Approach for Stability Analysis of the Variable Speed Face-Milling Process[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme. 2002, 124(1): 10-17.
[42] Zatarain M, Bediaga I, Munoa J, et al. Stability of Milling Processes with Continuous Spindle Speed Variation: Analysis in the Frequency and Time Domains, and Experimental Correlation[J]. Cirp Annals-Manufacturing Technology. 2008, 57(1): 379-384.
[43] Xinhua L, Balachandran B. Stability of Up-Milling and Down-Milling Operations with Variable Spindle Speed[J]. Journal of Vibration and Control. 2010, 16(7-8): 1151-1168.
[44] Seguy S, Insperger T, Arnaud L, et al. Suppression of Period Doubling Chatter in High-Speed Milling by Spindle Speed Variation[J]. Machining Science and Technology. 2011, 15(PII 9380210952): 153-171.
[45] Budak E, Altintas Y. Analytical Prediction of Chatter Stability in Milling. I. General Formulation[J]. Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control. 1998, 120(1): 22-30.
[46] Altintaş Y, Budak E. Analytical Prediction of Stability Lobes in Milling[J]. CIRP Annals - Manufacturing Technology. 1995, 44(1): 357-362.
[47] Merdol S D, Altintas Y. Multi Frequency Solution of Chatter Stability for Low Immersion Milling[J]. Transactions of the ASME. Journal of Manufacturing Science and Engineering. 2004, 126(3): 459-466.
[48] Bachrathy D, Stepan G. Improved Prediction of Stability Lobes with Extended Multi Frequency Solution[J]. Cirp Annals-Manufacturing Technology. 2013, 62(1): 411-414.
[49] Insperger T, Stepan G. Semi-Discretization Method for Delayed Systems[J]. International Journal for Numerical Methods in Engineering. 2002, 55(5): 503-518.
[50] Insperger T, Stepan G. Updated Semi-Discretization Method for Periodic Delay-Differential Equations with Discrete Delay[J]. International Journal for Numerical Methods in Engineering. 2004, 61(1): 117-141.
[51] Insperger T, Stepan G, Turi J. On the Higher-Order Semi-Discretizations for Periodic Delayed Systems[J]. Journal of Sound and Vibration. 2008, 313(1-2): 334-341.
[52] Altintas Y, Stepan G, Merdol D, et al. Chatter Stability of Milling in Frequency and Discrete Time Domain[J]. CIRP Journal of Manufacturing Science and Technology. 2008, 1(1): 35-44.
[53] 李中伟,龙新华,孟光. 基于Magnus-Gaussian截断的铣削系统稳定性的半离散分析法[J]. 振动与冲击. 2009(05): 69-73.
LI Zhong-wei, LONG Xin-hua, MENG Guang. Stability analysis of milling process by semi discretization method based on Magnus-Guassian truncation[J]. Journal of vibration and shock. 2009(05): 69-73.
[54] Niu J, Ding Y, Zhu L, et al. Runge-Kutta Methods for a Semi-Analytical Prediction of Milling Stability[J]. Nonlinear Dynamics. 2014, 76(1): 289-304.
[55] Ding Y, Zhu L, Zhang X, et al. A Full-Discretization Method for Prediction of Milling Stability[J]. International Journal of Machine Tools and Manufacture. 2010, 50(5): 502-509.
[56] Insperger T. Full-Discretization and Semi-Discretization for Milling Stability Prediction: Some Comments[J]. International Journal of Machine Tools & Manufacture. 2010, 50(7): 658-662.
[57] Zhang X, Xiong C, Ding Y. Improved Full-Discretization Method for Milling Chatter Stability Prediction with Multiple Delays[M]. Intelligent robotics and applications, Springer, 2010, 541-552.
[58] Ding Y, Zhu L, Zhang X, et al. Second-Order Full-Discretization Method for Milling Stability Prediction[J]. International Journal of Machine Tools and Manufacture. 2010, 50(10): 926-932.
[59] Li M, Zhang G, Huang Y. Complete Discretization Scheme for Milling Stability Prediction[J]. Nonlinear Dynamics. 2013, 71(1-2): 187-199.
[60] Bayly P V, Halley J E, Mann B P, et al. Stability of Interrupted Cutting by Temporal Finite Element Analysis[J]. Journal of Manufacturing Science and EngineeringJournal of Manufacturing Science and Engineering. 2003, 125(2): 220.
[61] Garg N K, Mann B P, Kim N H, et al. Stability of a Time-Delayed System with Parametric Excitation[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme. 2007, 129(2): 125-135.
[62] Mann B P, Patel B R. Stability of Delay Equations Written as State Space Models[J]. Journal of Vibration and Control. 2010, 16(7-8SI): 1067-1085.
[63] Ding Y, Zhang X, Ding H, et al. Numerical Integration Method for Prediction of Milling Stability[J]. Journal of Manufacturing Science and Engineering. 2011, 133(3): 31005.
[64] Ding Y, Zhu L, Zhang X, et al. Milling Stability Analysis Using the Spectral Method[J]. Science China Technological Sciences. 2011, 54(12): 3130-3136.
[65] Zhang X, Xiong C, Ding Y, et al. Variable-Step Integration Method for Milling Chatter Stability Prediction with Multiple Delays[J]. Science China Technological Sciences. 2011, 54(12): 3137-3154.
[66] Yi S, Nelson P, Ulsoy A. Delay Differential Equations Via the Matrix Lambert W Function and Bifurcation Analysis: Application to Machine Tool Chatter[J]. Mathematical Biosciences and Engineering. 2007, 4(2): 355.
[67] Maghami Asl F, Ulsoy A G. Analysis of a System of Linear Delay Differential Equations[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. 2003, 125(2): 215-223.
[68] Butcher E A, Bobrenkov O A, Bueler E, et al. Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels[J]. Journal of Computational and Nonlinear Dynamics. 2009, 4(3): 1-12.
[69] Butcher E A, Ma H, Bueler E, et al. Stability of Linear Time-Periodic Delay-Differential Equations Via Chebyshev Polynomials[J]. International Journal for Numerical Methods in Engineering. 2004, 59(7): 895-922.
[70] Ding Y, Zhu L, Zhang X, et al. Stability Analysis of Milling Via the Differential Quadrature Method[J]. Journal of Manufacturing Science and Engineering. 2013, 135(4): 44502.
[71] Tlusty J, Ismail F. Special Aspects of Chatter in Milling[J]. Journal of Vibration, Acoustics Stress and Reliability in Design. 1983, 105(1): 24-32.
[72] Smith S, Tlusty J. Efficient Simulation Programs for Chatter in Milling[J]. CIRP Annals-Manufacturing Technology. 1993, 42(1): 463-466.
[73] Campomanes M L, Altintas Y. An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions[J]. Journal of Manufacturing Science and Engineering. 2003, 125(3): 416-422.
[74] Li H Z, Li X P, Chen X Q. A Novel Chatter Stability Criterion for the Modelling and Simulation of the Dynamic Milling Process in the Time Domain[J]. The International Journal of Advanced Manufacturing Technology. 2003, 22(9-10): 619-625.
[75] Zhongqun L, Qiang L. Solution and Analysis of Chatter Stability for End Milling in the Time-Domain[J]. Chinese Journal of Aeronautics. 2008, 21(2): 169-178.
[76] Quintana G, Ciurana J, Ferrer I, et al. Sound Mapping for Identification of Stability Lobe Diagrams in Milling Processes[J]. International Journal of Machine Tools and Manufacture. 2009, 49(3): 203-211.
[77] Quintana G, Ciurana J, Teixidor D. A New Experimental Methodology for Identification of Stability Lobes Diagram in Milling Operations[J]. International Journal of Machine Tools and Manufacture. 2008, 48(15): 1637-1645.
[78] 迟玉伦, 李郝林. 铣削颤振稳定域叶瓣图确定方法研究[J]. 振动与冲击. 2014,33(4):90-93.
CHI Yu-lun,LI Hao-lin.Determination of chatter stability field lobe diagrams for a milling processing[J].Journal of Vibration and Shock,2014,33(4):90-93. 
[79] Mascardelli B A, Park S S, Freiheit T. Substructure Coupling of Microend Mills to Aid in the Suppression of Chatter[J]. Journal of Manufacturing Science and Engineering. 2008, 130(1): 11010.
[80] Filiz S, Ozdoganlar O B. Microendmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part I: Model Development and Numerical Solution[J]. Journal of Manufacturing Science and Engineering. 2008, 130(3): 31119.
[81] Tajalli S A, Movahhedy M R, Akbari J. Chatter Instability Analysis of Spinning Micro-End Mill with Process Damping Effect Via Semi-Discretization Approach[J]. Acta Mechanica. 2014, 225(3): 715-734.
[82] Tajalli S A, Movahhedy M R, Akbari J. Size Dependent Vibrations of Micro-End Mill Incorporating Strain Gradient Elasticity Theory[J]. Journal of Sound and Vibration. 2013, 332(15): 3922-3944.
[83] Tajalli S A, Movahhedy M R, Akbari J. Investigation of the Effects of Process Damping on Chatter Instability in Micro End Milling[J]. Procedia CIRP. 2012: 156-161.
[84] Uhlmann E, Mahr F. A Time Domain Simulation Approach for Micro Milling Processes[J]. Procedia CIRP. 2012, 4(0): 22-28.
[85] Mustapha K B, Zhong Z W. A Hybrid Analytical Model for the Transverse Vibration Response of a Micro-End Mill[J]. Mechanical Systems and Signal Processing. 2013, 34(1–2): 321-339.
[86] Rahnama R, Sajjadi M, Park S S. Chatter Suppression in Micro End Milling with Process Damping[J]. Journal of Materials Processing Technology. 2009, 209(17): 5766-5776.
[87] Afazov S M, Ratchev S M, Segal J, et al. Chatter Modelling in Micro-Milling by Considering Process Nonlinearities[J]. International Journal of Machine Tools and Manufacture. 2012: 28-38.
[88] Afazov S M, Zdebski D, Ratchev S M, et al. Effects of Micro-Milling Conditions On the Cutting Forces and Process Stability[J]. Journal of Materials Processing Technology. 2013, 213(5): 671-684.
[89] Jin X, Altintas Y. Chatter Stability Model of Micro-Milling with Process Damping[J]. Journal of Manufacturing Science and Engineering. 2013, 135(3): 31011.
[90] Song Q, Liu Z, Shi Z. Chatter Stability for Micromilling Processes with Flat End Mill[J]. International Journal of Advanced Manufacturing Technology. 2014, 71(5-8): 1159-1174.
[91] Biermann D, Baschin A. Influence of Cutting Edge Geometry and Cutting Edge Radius On the Stability of Micromilling Processes[J]. Production Engineering. 2009, 3(4-5): 375-380.
[92] Baschin A, Kahnis P, Biermann D. Dynamic Analysis of the Micromilling Process – Influence of Tool Vibrations On the Quality of Microstructures[J]. Materialwissenschaft Und Werkstofftechnik. 2008, 39(9): 616-621.
[93] Park S S, Rahnama R. Robust Chatter Stability in Micro-Milling Operations[J]. CIRP Annals - Manufacturing Technology. 2010, 59(1): 391-394.
 

PDF(864 KB)

Accesses

Citation

Detail

段落导航
相关文章

/