泡沫铝夹芯板加固山区跨泥石流桥墩抗冲结构优化研究

王东坡1,李伟2,何思明3,4,李新坡3,4,吴永3,4

振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 108-114.

PDF(3331 KB)
PDF(3331 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 108-114.
论文

泡沫铝夹芯板加固山区跨泥石流桥墩抗冲结构优化研究

  • 王东坡1,李伟2,何思明3,4,李新坡3,4,吴永3,4
作者信息 +

Study on the Structure Optimization of Aluminum Foam Sandwich Panel for Bridge Pier Reinforcement across Debris Flow in Mountain Areas

  • WANG Dongpo1, LI Wei2, HE Siming3,4, Li Xinpo3,4, Wu Yong3,4
Author information +
文章历史 +

摘要

在山区跨泥石流桥墩外表面覆盖一层缓冲防护结构可有效减小泥石流冲击危害,达到保护桥墩的目的。为此,将泡沫铝作为一种耗能缓冲材料引入桥墩抗泥石流冲击领域,并将其与钢板组合为复合夹芯结构,采用静力压载试验对五种不同结构形式夹芯板的力学性能进行分析。结果表明:泡沫铝夹芯结构在进入屈服强度后有宽而平的耗能缓冲应力平台,可吸收大量的冲击能量;对比五种夹芯结构的耗能性能,确定未加入竖向钢板的双层泡沫铝夹芯结构为最优化的结构形式。在此基础上开展优化结构在跨泥石流桥墩上的示范应用,工程应用效果显著。

Abstract

Buffer structure on bridge pier in mountain areas can effectively reduce the impact of debris flow, and protect the bridge pier. Therefore, as an energy dissipation buffer material, the material of aluminum foam combines with steel plate was introduced into the field of debris flow impact bridge pier. Mechanical properties of five different structural forms of sandwich panels were analyzed by static load test. The results show: The aluminum foam sandwich structure has a broad and flat energy buffer platform, which can absorb a large amount of impact energy; the double layer aluminum foam sandwich structure is the best structural form by comparing the energy dissipation performance of the five different structural forms of sandwich panels. On the basis of this, the optimized structure was applied to the bridge pier across the debris flow, and the effect of engineering application is remarkable.

 

关键词

泥石流 / 桥墩 / 泡沫铝 / 压载试验 / 耗能缓冲

Key words

 Debris flow / Bridge pier / Aluminum foam / Compression test / Energy dissipation

引用本文

导出引用
王东坡1,李伟2,何思明3,4,李新坡3,4,吴永3,4. 泡沫铝夹芯板加固山区跨泥石流桥墩抗冲结构优化研究[J]. 振动与冲击, 2016, 35(10): 108-114
WANG Dongpo1, LI Wei2, HE Siming3,4, Li Xinpo3,4, Wu Yong3,4. Study on the Structure Optimization of Aluminum Foam Sandwich Panel for Bridge Pier Reinforcement across Debris Flow in Mountain Areas[J]. Journal of Vibration and Shock, 2016, 35(10): 108-114

参考文献

[1] 王全才,刘希林,孔纪名,等. 都汶公路泥石流对沟口桥梁危险性评价[J]. 地球科学进展,2004, 19(增):   238-241.
WANG Quan-cai, LIU Xi-lin, KONG Ji-ming, et al. Risk assessment of debris flow to bridge pier of Du wen road [J]. Advances in Earth Science, 2004, 19(supp.): 238-241.
[2] 何思明,庄卫林,张雄,等. 都汶公路彻底关大桥桥墩抗滚石冲击防护研究[J]. 岩石力学与工程学报,2013, 32(2): 3421-3427.
HE Si-ming, ZHUANG Wei-lin, ZHANG Xiong, et al. Research on rockfall impact prevention of Che Di-guan bridge pier, Du Wen road [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 3421-3427.
[3] 王东坡,何思明,吴永,等. 滚石防护棚洞EPS垫层结构缓冲作用研究[J]. 振动与冲击,2014, 33(4): 199-203.
WANG Dong-po, HE Si-ming, WU Yong, et al. Cushioning effect of rock sheds with EPS sushion on rock-falls action [J]. Journal of Vibration and Shock, 2014, 33(4): 199-203.
[4] 向波,何思明,欧阳朝军,等. 都(江堰)—汶(川)高速沙坪大桥桥面柔性滚石防护技术研究[J]. 四川大学学报(工程科学版),2014, 46(2): 8-13.
XIANG Bo, HE Si-ming, OUYANG Chao-jun, et al. Study about the flexible protection technology against rockfall for the deck of shaping Bridge on the Dujiangyan-Wenchuan highway [J]. Journal of Sichuan University: Engineering Science Edition, 2014, 46(2): 8-13.
[5] Andrews E, Sanders E, Gibon L J. Compressive and tensile behavior of aluminum foam [J]. Material Science Engineering, 1999, A270: 113-124.
[6] Han Fusheng, Zhu Zhengang, Gao Junchang, et al. Compressive Deformation and Energy Absorbing Characteristic of Foamed Aluminum [J]. Metallurgical and Materials Transactions, 1998, 29: 2497-2502.
[7] 王展光,蔡萍,应建中,等. 闭孔泡沫铝的力学性能和吸能能力[J]. 材料导报B:研究篇,2012, 26(5): 152-155.
WANG Zhan-guang, CAI Ping, YING Jian-zhong, et al. Mechanical properties and energy absorption capability of Closed cell aluminum foam [J]. Materials Review B: Research Articles, 2012, 26(5): 152-155.
[8] 康建功,石少卿,陈进.泡沫铝衰减冲击波压力的理论分析[J]. 振动与冲击,2010, 29(12): 128-131.
KANG Jian-gong, SHI Shao-qing, CHEN Jin. Theoretical analysis of shock wave pressure of aluminum foam [J]. Journal of Vibration and Shock, 2010, 29(12): 128-131.
[9] Yu J L, Wang X, Wei Z G, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam fore[J]. International Journal of Impact Engineering, 2003, 28(3): 331-347.
[10] D Ruan, G Lu, Y C Wong. Quasi-static indentation tests on aluminium foam sandwich panels [J]. Composite Structures, 2010, 92(9): 2039-46.
[11] Ines Ivanez, Carlos Santiuste, Sonia Sanchez-Saez. FEM analysis of dynamic flexural behaviour of composite sandwich beams with foam core [J]. Composite Structures, 2010, 92(9): 2285-2291.
[12] 邹广平,唱忠良,明如海,等. 泡沫铝夹芯板的冲击性能研究[J]. 兵工学报,2009, 30(2): 276-279.
ZOU Guang-ping, CHANG Zhong-liang, MING Ru-hai, et al. Study on impact properties of aluminum foam sandwich panels [J]. Acta Armamentarii, 2009, 30(2): 276-279.
[13] 宋延泽,赵隆茂,赵勇刚. 撞击载荷下泡沫铝夹层板的动力响应[J]. 爆炸与冲击,2010, 30(3): 301-307.
SONG Yan-ze, ZHAO Long-mao, ZHAO Yong-gang. Dynamic response of aluminum foam sandwich plate under impact load [J]. Explosion and Shock Waves, 2010, 30(3): 301-307.
[14] 敬霖,王志华,赵隆茂,等. 撞击荷载下泡沫铝夹芯梁的塑性动力响应[J]. 爆炸与冲击,2010, 30(6): 561-568.
JING Lin, WANG Zhi-hua, ZHAO Long-mao, et al. Dynamic plastic response of foam sandwich beams subjected    to impact loading [J]. Explosion and Shock Waves, 2010. 30(6): 561-568.
[15] 王永刚,王春雷.结构特征参数和应变速率对泡沫铝压缩力学性能的影响[J].兵工学报,2011, 32(1) : 106—111.
WANG Yong-gang, WANG Chun-lei. Effect of structure characteristic parameters and strain rate on the compressive mechanical properties of aluminum foams[J]. Acta Armamentarii, 2011, 32(1) : 106—111.
[16] 李斌潮,赵桂平,卢天健. 闭孔泡沫铝低速冲击防护的临界条件与优化设计[J]. 固体力学学报,2011, 32(4) : 325—338.
LI Bin-chao, ZHAO Gui-ping, LU Tian-jian. Critical conditions and optimal design of closed-celled aluminum foam protection under low velocity impact[J]. Chinese Journal of Solid Mechanics, 2011, 32(4) : 325—338.
[17] 万剑芳,屠永清. 不同基体泡沫铝材料的吸能特性研究[J]. 煤矿机械,2009, 30(2): 70-72.
WAN Jian-fang, TU Yong-qing. Study on energy absorption properties of aluminum foams with different matrix foam [J]. Coal Mine Machinery, 2009, 30(2): 70-72.
[18] 何思明,王东坡,吴永. 崩塌滚石灾害的力学机理与防治技术[J]. 自然杂志,2014, 36(5): 336-345.
HE Si-ming, WANG Dong-po, WU Yong. Formation mechanism and key prevention technology of rockfalls [J]. Chinese Journal of Nature, 2014, 36(5): 336-345.

PDF(3331 KB)

Accesses

Citation

Detail

段落导航
相关文章

/