钢/聚氨酯夹层结构动态压缩力学性能与本构模型研究

沈超明 叶仁传 田阿利

振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 115-119.

PDF(1539 KB)
PDF(1539 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 115-119.
论文

钢/聚氨酯夹层结构动态压缩力学性能与本构模型研究

  • 沈超明  叶仁传  田阿利
作者信息 +

Experimental Study on Dynamic Compressive Mechanical Properties and Constitutive Model of Steel/polyurethane Sandwich structure

  • SHEN Chao-ming  YE Ren-chuan  TIAN A-li
Author information +
文章历史 +

摘要

基于霍普金森压杆(SHPB)装置,对高应变率下的钢/聚氨酯夹层结构进行了动态压缩实验,通过不同厚度比的试样比较,建立了夹层结构的动态本构模型。实验结果表明,钢/聚氨酯夹层结构对应变率较为敏感,其屈服强度随应变率的增大而增大,且屈服强度的增幅随应变率的提高会有一定幅度的上升。基于Johnson-Cook模型,考虑厚度比对结果的影响,建立适用于钢/聚氨酯夹层结构的动态本构模型,并通过试验分析,确定了模型参数。利用实测应力应变曲线拟合的方法得到的钢/聚氨酯夹层结构的动态压缩本构模型,能描述不同厚度比的钢/聚氨酯夹层结构在高应变率下的应力应变关系,具有较高的精度。

Abstract

Dynamic compressive constitutive model of steel/polyurethane sandwich structure with different thickness ratio under high strain rate is proposed based on the split Hopkinson pressure bar (SHPB) experimental tests. As the experimental results show, steel/polyurethane sandwich structure is very sensitive to strain rate. The yield strength of steel/polyurethane sandwich structure is increased as the strain rates are raised and the growth rate is greater than the increase speed of strain rate. Based on Johnson-Cook constitutive model, dynamic constitutive model for steel/polyurethane sandwich structure with different thickness ratio was proposed. The parameters in constitutive model are determined by analysis of experimental tests. It can be conclude that the dynamic compressive constitutive model presented in this paper is effective and accurate to descript the stress-strain curve of steel/polyurethane sandwich structure.

关键词

本构模型 / 动态压缩力学性能 / 夹层结构 / SHPB / 厚度比

Key words

constitutive model / dynamic compressive mechanics properties / sandwich structure / SHPB / thickness ratio

引用本文

导出引用
沈超明 叶仁传 田阿利. 钢/聚氨酯夹层结构动态压缩力学性能与本构模型研究[J]. 振动与冲击, 2016, 35(10): 115-119
SHEN Chao-ming YE Ren-chuan TIAN A-li. Experimental Study on Dynamic Compressive Mechanical Properties and Constitutive Model of Steel/polyurethane Sandwich structure[J]. Journal of Vibration and Shock, 2016, 35(10): 115-119

参考文献

[1] 司卫华.船舶复合材料国外最新进展[J]. 塑料工业, 2011, 39(6):1-7.
SI Wei-hua. The Foreign Latest Progress of Composite Materials for Ships[J]. China Plastics Industry, 2011, 39(6):1-7. (in chinese)
[2] 白光辉.复合材料船艇结构选型及抗爆性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2010.
Bai Guang-hui. Structural Lectotype of Composite Material Ship and Analysis of The Anti-Explosion [D]. Harbin: Harbin Institute of Technology, 2010 (in chinese)
[3] 姜锡瑞.船舶与海洋工程材料[M].哈尔滨:哈尔滨工程大学出版社, 2000.172-173.
Jiang Xi-rui. Material in ship and ocean engineering[M]. Harbin: Harbin Institute Of Technology Press, 2000.172-173. (in chinese)
[4] Devin K. H., Tommy C., Thomas M. M., et al. Field investigation of a sandwich plate system bridge deck [J]. Journal of Performance of Constructed Facilities, 2008,22(5) :305-315.
[5] Kennedy S. J., Kennedy D. J .L. A True innovation: Steel plates with a structural elastomer core[C]. Proceedings of the 5th International Conference on Composite Construction in Steel and Concrete V, ASCE, 2006:114-126.
[6] 易玉华, 石朝锋. 聚氨酯夹层结构板的性能与制造方法[J]. 造船技术, 2007, (6):36-38.
Yi Yu-hua, Shi Zhao-feng. Performance and Producing Process of Polyurethane Sandwich Plate[J]. Marine Technology, 2007, (6):36-38.
[7] Kennedy D.J.L., Dorton R.A. and Alexander S.D.B.The Sandwich Plate System for bridge decks[C].Proceedings 19th Annual International Bridge Conference, Engineers Society of Western Pennsylvania, Pittsburgh PA, 2002:13-17.
[8] 王峰, 步立军. 一种造船用未来型新材料——SPS材料简介[J].江苏船舶, 2008,(5): 43-44.
Wang Feng,Bu Li-Jun. A futurity type new material for shipbuilding——Brief introduction of SPS material[J]. Jiangsu Ship, 2008,(5): 43-44.(in chinese)
[9] Mouritz A P, Gellert E, Burchhill P, Challis K. Review of advanced composite structures for naval ships and submarines[J]. Composite Structures.2001,53(1): 21-41.
[10] 李为民, 许金余, 沈刘军, 等. Φ100mmSHPB应力均匀及恒应变率加载试验技术研究[J]. 振动与冲击, 2008, 27(2):129-132.
Li Wei-min, Xu Jin-yu, Shen Liu-jun, et al. Study on 100-mm-Diameter SHPB Techniques of Dynamic Stress Equilibrium and Nearly Constant Strain Rate Loading[J]. Journal of Vibration and Shock, 2008, 27(2):129-132.
[11] 王礼立. 应力波基础(第2版)[M]. 北京:国防工业出版社, 2005.51-64.
[12] 毛萍莉, 席通, 刘正, 等. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, (5):53-58,65.
Mao Ping-li, Xi Tong, Liu Zheng, et al. Dynamic Mechanical Property of AZ31 Magnesium Alloy Welding Joint Under High Strain Rate[J]. Journal of Materials Engineering, 2014, (5):53-58,65. (in chinese)
[13] 沈玲燕, 李永池, 王志海, 等. 三维正交机织玻璃纤维/环氧树脂复合材料动态力学性能的实验和理论研究[J]. 复合材料学报, 2012,29(4):157-162.
Shen Ling-yan, Li Yong-chi, Wang Zhi-hai, et al. Experimental and Theoretical Research on The Dynamic Properties of 3D Orthogonal Woven E-Glass Fiber/Epoxy Composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4):157-162. (in chinese)
[14] Gordon R. Johnson, William H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):34-35.
[15] 陶俊林. SHPB实验技术若干问题研究[D]. 绵阳: 中国工程物理研究院, 2005.
Tao Jun-lin. An Investigation on Some Issues of SHPB Technique[D]. Mianyang: China Academy of Engineering Physics, 2005. (in chinese)
[16] Marc Andre Meyers. Dynamic Behavior of Materials [M]. Beijing: National Defense Industry Press.2006.40-41.
[17] 柳爱群, 黄西成. 高应变率变形的Johnson-Cook动态本构模型参数识别方法[J]. 应用数学和力学, 2014,35 (2):219-225.
Liu Ai-qun, Huang Xi-cheng. Identification of High-strain-rate Material Parameters in Dynamic Johnson-Cook Constitutive Model[J]. Applied Mathematics and Mechanics, 2014,35 (2):219-225.(in chinese)
 

PDF(1539 KB)

Accesses

Citation

Detail

段落导航
相关文章

/