为准确反映磁流变减振器(MRD)的高频输出特性,本文基于考虑液体流动惯性和可压缩性的基本磁流变减振器模型,结合高频情况下的MRD内部流动特征,引入流动局部损失成分并考虑磁流变减振器液室内压力分布规律提出了修正的高频模型。为验证模型的准确性,采用动态分层的动网格方法进行了在活塞高频往复运动下磁流变液室内流动情况的计算流体力学(CFD)仿真并获得阻尼力输出。仿真结果表明,本文提出的模型能够反映磁流变减振器的高频动态硬化情况并准确地预测高频特性曲线中峰值对应频率和峰值大小。最后基于修正的理论模型在保证低频使用性能的前提下以改善高频动态硬化为目标对MRD结构参数进行了优化设计,改善了其高频硬化特性,为MRD的应用和设计提供了参考。
Abstract
In order to reflect high-frequency characteristics of magneto rheological damper(MRD) exactly, based on the model of MRD considering inertia and compressibility, a modified high-frequency model was proposed in which local loss of flow was introduced and pressure distribution in the liquid chamber of MRD was taken into consideration as well. To verify the accuracy of the model, CFD simulation of the flow in MRD by using dynamic layering algorithm to achieve dynamic mesh was performed. Simulation results indicated: the model proposed in this paper was able to reflect dynamic hardening in high frequency of MRD and predict peak frequency and peak value in the high frequency characteristic curve more accurately. Last based on the model structure parameters of MRD were optimized aiming to improve dynamic hardening in the prerequisite of ensuring low frequency performance, which provides the references for the design and analysis in the application of high frequency.
关键词
磁流变减振器(MRD) /
高频硬化 /
压力分布 /
CFD /
结构优化
{{custom_keyword}} /
Key words
MR damper /
high frequency hardening /
pressure distribution /
CFD /
structure improvement
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王琪民,徐国梁,金建峰.磁流变液的流变性能及其工程应用[J]. 中国机械工程, 2002,13(3):93-96.
WANG Qi-min, XU Guo-liang, JIN jianfeng. The rheological property and engineering application of magnetorheological fluids[J]. China Mechanical Engineering, 2002,13(3):93-96.
[2] Carlson J D, Catanzarite D M, St. Clair K A. Commercial magneto-rheological fluid devices[J]. International Journal of Modern Physics B, 1996, 10(23n24):2857-2865.
[3] Yang G, Spencer B F, Carlson J D, et al. Large-scale MR fluid dampers: modeling and dynamic performance considerations[J]. Engineering structures, 2002, 24(3):309-323.
[4] Ha S H, Seong M, Choi S. Design and vibration control of military vehicle suspension system using magnetorheological damper and disc spring[J]. Smart Materials and Structures, 2013, 22(6):65006.
[5] Gordaninejad F, Kelso S P. Magneto-rheological fluid shock absorbers for HMMWV[C]// SPIE's 7th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, 2000: 266-273.
[6] Pierrick J, Ohayon R, Le Bihan D. Semi-active control using magnetorheological dampers for payload launch vibration isolation: Smart Structures and Materials, 2006[C]. International Society for Optics and Photonics.
[7]张步云, 陈怀海, 贺旭东, 等. 磁流变阻尼器减振特性实验研究[J]. 南京航空航天大学学报, 2013,44(6): 855-861.
ZHANG Bu-yun, CHEN Huai-hai, HE Xu-dong, et al. Experiment study on damping characteristic of magneto-rheological damper[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 44(6): 855-861.
[8]Brigley M, Choi Y T, Wereley N M, et al. Magnetorheological isolators using multiple fluid modes[J]. Journal of Intelligent Material Systems and Structures, 2007, 18(12): 1143-1148.
[9]涂奉臣, 陈照波, 李华, 等. 新型整星隔振平台的被动隔振性能及星箭耦合特性分析[J]. 航空学报, 2010, 31(3): 538-545.
TU Feng-chen, CHEN Zhao-bo, LI Hua, et al. Research on passive isolation characteristics and rocket-spacecraft coupling of a new whole-spacecraft isolation platform[J]. Journal of aeronautics, 2010, 31(3): 538-545.
[10]涂奉臣. 基于磁流变阻尼器的整星半主动隔振技术研究[D]. 哈尔滨工业大学, 2010.
[11] Alexandridis A, Gołdasz J. Simplified model of the dynamics of magneto-rheological dampers[J]. Mechanics, 2005, 24(2): 47-53.
[12] GOŁDASZ J. High-frequency model of monotube shock absorbers[J]. Modelowanie Inżynierskie, 2010, 8: 81-88.
[13] Chang-sheng Z H U. Dynamics of a rotor supported on magneto-rheological fluid squeeze film damper[J]. Chinese Journal of Aeronautics, 2001, 14(1): 6-12.
[14] Sung K G, Choi S B, Lee H G, et al. Performance comparison of MR dampers with three different working modes: Shear, flow and mixed mode[J]. International Journal of Modern Physics B, 2005, 19(07n09): 1556-1562.
[15] 景思睿. 流体力学[M]. 西安: 西安交通大学出版社,2010.
[16] 潘杰锋. 磁流变减振器结构设计及优化[D]. 重庆大学, 2010.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}