曲线连续梁桥不同减隔震方案对比分析

李正英,蒋林均,李正良

振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 157-161.

PDF(2023 KB)
PDF(2023 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 157-161.
论文

曲线连续梁桥不同减隔震方案对比分析

  • 李正英,蒋林均,李正良
作者信息 +

Comparative Analysis of Seismic Control Schemes for Continuous Curved Girder Bridge

  • Li Zhengying,Jiang Linjun, Li Zhengliang
Author information +
文章历史 +

摘要

采用减隔震装置可有效减小连续梁桥的地震反应。选取一曲线连续梁桥,根据该桥的地震反应特点,分别采用铅芯橡胶支座、粘滞阻尼器、摩擦摆支座三种减隔震装置进行减震控制。通过动力非线性时程分析,对比了三种减震装置的减震效果,发现铅芯橡胶支座和粘滞阻尼器对边墩的墩底切向反力有放大作用,摩擦摆支座对主梁位移有放大作用;三种单一的减震措施难以完全满足该曲线连续梁桥减震控制要求。为此在单一的减震措施基础上进行改进,形成混合减震控制方案。分析表明,改进的混合减震措施可以弥补单一减震措施的不足,取得良好的减震效果。

Abstract

Installing isolation bearings on bridge is the main seismic control measures for multi-span girder bridges. A continuous curved girder bridge is taken as an example, and lead-rubber bearings (LRB), viscous dampers and friction pendulum bearings (FPB) are respectively employed on this bridge to mitigate seismic response. Nonlinear dynamic analysis shows that LRB and viscous dampers may amplify the side columns’ tangential base reaction and FPB magnify displacements of girder. The three kinds of seismic control scheme can’t satisfy seismic control target. Then a comprehensive seismic mitigation measure is proposed based on the preceding comparative analysis. The results of these analyses show that the combined isolation is superior to those seismic control schemes in which only one type of isolation bearing is used, and the combined isolation scheme can be beneficial in reducing seismic responses of bridge.

关键词

曲线桥 / 铅芯橡胶支座 / 粘滞阻尼器 / 摩擦摆支座 / 混合减隔震。

Key words

curved bridge / lead-rubber bearing / viscous fluid damper / friction pendulum bearing / combined isolation

引用本文

导出引用
李正英,蒋林均,李正良. 曲线连续梁桥不同减隔震方案对比分析[J]. 振动与冲击, 2016, 35(10): 157-161
Li Zhengying,Jiang Linjun, Li Zhengliang. Comparative Analysis of Seismic Control Schemes for Continuous Curved Girder Bridge[J]. Journal of Vibration and Shock, 2016, 35(10): 157-161

参考文献

[1] K Kawashima. Seismic Design and Retrofit of Bridge[A]. 12WCEE[C], New Zealand, 2000.
[2] 蒋建军,李建中,范立础.桥梁板式橡胶支座与粘滞阻尼器组合使用的减震性能研究[J].公路交通科技,2005,22(8):44-48.
[3] 范立础, 王志强. 我国桥梁隔震技术的应用 [J]. 振动工程学报, 1999, 12 (2): 173-181.
[4] 陈霄. 隔震曲线桥梁的地震反应分析研究[D].青岛理工大学,2014.
[5] Felix D. Ruiz Julian, Toshiro Hayashikawa, et al. Seismic performance of isolated curved steel viaducts equipped with deck unseating prevention cable restrainers[J]. Journal of Constructional Steel Research,2007 (63): 237-253.
[6] CSI. CSI Analysis Reference Manual [M]. California, Berkly: Computers and Structures, Inc, 2011.
[7] 中华人民共和国交通运输部. JT / T 822-2011 公路桥梁铅芯隔震橡胶支座[S]. 2011.
[8] 魏陆顺,周福霖,刘文光.组合基础隔震在建筑工程中的应用.地震工程与工程振动,27(2):158-163,2007.
[9] 龚健, 周云, 邓雪松. 某摩擦摆隔震框架结构地震反应分析 [J]. 土木工程学报, 2012, 45(2) 146-150
[10] Gokhan Pekcan, John B. Mander And Stuart S.Chen.  Fundamental Considerations for The Design of Non-linear Viscous Dampers. Earthquake Engng. Struct. Dyn. 1999;28:1405-1414
[11] 焦驰宇,张 恺,张连普等.考虑支座摩擦和墩柱损伤的桥梁用液体粘滞阻尼器参数确定方法[J].振动与冲击,2013,32(6):127-131.
[12] PEER. Strong Motion Database [OL].http://peer.berkeley.edu/smcat/search.html,2013.
[13] 建筑抗震设计规范( GB50011 -2010) [S]. 北京: 中国建筑工业出版社,2010

PDF(2023 KB)

Accesses

Citation

Detail

段落导航
相关文章

/