[1] Nakra B C. Vibration control in machines and structures using viscoelastic damping [J]. Journal of Sound and Vibration, 1998, 211(3):449-465
[2] Marcelo A T. Hybrid Active-Passive Damping Treatments Using Viscoelastic and Piezoelectric Materials: Review and Assessment [J]. Journal of Vibration and Control, 2002, 8:699–745.
[3] Kerwin E M. Damping of Flexural Waves by a Constrained Viscoelastic Layer [J]. Journal of the Acoustical Society of America, 1959, 31(7):952~962
[4] Unger E. E. and Kerwin E M. Loss factors of viscoelastic systems in therms of engergy concepts [J]. Journal of the Acoustical Society of America, 1962, 34(7):954~957
[5] Ditaranto, R.A. Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite Length Beams [J]. J. Applied Mechanics 1965, 87:881~886
[6] Mead, D.J.and Markus.S. The Forced Vibration of a Three-Layer Damping Sandwich Beam with Arbitrary Boundary Conditions [J]. J. Sound and Vibration 1969, 10(2):163~175
[7] Rao D K. Frequency and loss factors of sandwich beams under various boundary conditions [J]. Mechanical Engineering Science, 1978, 20: 271–282
[8]Johnson C D, Kienholz D A. Finite element prediction of damping in structures with constrained layers[J].AIAA J, 1982,120(9):1284-129
[9] Galucio A C, Deu J F, Ohayon R. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators [J]. Computational Mechanics, 2004, 33: 282–291
[10] Kumar N, Singh S P. Vibration and damping characteristics of beams with active constrained layer treatments under parametric variations [J]. Materials and Design, 2009, 30: 4162–417
[11] Daya E M, Potier-Ferry M. A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures [J]. Computer Structure, 2001,79(5):533–541.
[12] Bilasse M, Daya E M, Azrar L. Linear and nonlinear vibrations analysis of viscoelastic sandwich beams [J]. Journal of sound and vibration, 2010, 329: 4950-4969
[13] Douglas B. E. and Yang J. C. S. Transverse compressional damping in the vibratory response of elastic–viscoelastic–elastic beams [J]. American Institute of Aeronautics and Astronautics Journa, 1978, 16(9): 925–930.
[14] Douglas B. E. Compressional damping in three-layer beams incorporating nearly incompressible viscoelastic cores [J]. Journal of Sound and Vibration, 1986, 104(2): 343–347.
[15] Lee B.C. and Kim K. J. Consideration of both extensional and shear strain of core material in modal property estimation of sandwich plates [J]. Proceedings of the American Society of Mechanical Engineers Design Technical Conferences, 1995, 701–708.
[16] Sisemore C. L., Smaili A.A. and Darvennes C. M. Experimental measurement of compressional damping in an elastic–viscoelastic–elastic sandwich beam [J]. Proceedings of the American Society of Mechanical Engineers Noise Control and Acoustics Division, 1999, 223–227.
[17] Sisemore C. L and Darvennes C. M. Transverse vibration of elastic-viscoelastic-elastic sandwich beams: compression-experimental and analytical study [J]. Journal of Sound and Vibration, 2002, 252(1): 155–167.
[18] E.A.R. Specialty Composites, Zionsville, Indiana, USA, Material Data Sheets.
[19] Soni M L. Finite element analysis of viscoelastically damped sandwich structures, Shock Vibrat. Bull. 1981, 55 (1):97–109.