基于压缩耗能假设的粘弹性夹芯梁的横向振动

黄志诚1, 2, 秦朝烨1, 褚福磊1?

振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 185-191.

PDF(1114 KB)
PDF(1114 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 185-191.
论文

基于压缩耗能假设的粘弹性夹芯梁的横向振动

  • 黄志诚1, 2, 秦朝烨1, 褚福磊1?
作者信息 +

Transverse vibration of viscoelastic sandwich beams based on the compression dissipating energy assumption

  • HUANG Zhi-cheng 1, 2, QIN Zhao-ye Qin1, CHU Fu-lei1    
Author information +
文章历史 +

摘要

建立了一种新的有限元模型用于研究三层粘弹夹芯梁的横向振动。该模型第一层为约束层,中间层为粘弹性层,第三层为基梁层。将约束层和基梁层视作欧拉-伯努利(Euler-Bernoulli)梁,假定粘弹性层承受横向拉压变形。拉压应变来源于约束层和基梁层的横向相对运动,并且粘弹性层的横向位移被假定为约束层和基梁层位移之间的线性插值。为了验证该有限元模型的有效性,将其与实验结果和几种解析模型进行了对比,结果证明该有限元模型对夹芯梁结构固有频率的预测具有良好的精度,但对损耗因子的预测精度上有待提高。
    

Abstract

A new finite element model is developed for analyzing the transverse vibration of the three-layer viscoelastic sandwich beams. The first layer is the constraining layer, the mid-layer is the viscoelastic core and the third layer is the base beam. The constraining layer and the beam are treated as the Euler-Bernoulli beam. The viscoelastic core is assumed to withstand tension and compression in the transverse. The compressive strain of the viscoelastic layer comes from the relative vibration of the constraining layer and the base beam, and the displacement of the viscoelastic layer is assumed to be a linear interpolation of the displacement between the constrained layer and the beam. The present finite element model is compared with the experimental results and several analytical models to verify its validity. The results show that the finite element model can predict the resonant frequency accurately, but the prediction accuracy of the loss factor needs to be improved on.

关键词

梁的横向振动;压缩阻尼; 粘弹夹芯梁;有限元 / 损耗因子

Key words

Transverse vibration of beams / compression damping / Viscoelastic sandwich beam / Finite element method / loss factor

引用本文

导出引用
黄志诚1, 2, 秦朝烨1, 褚福磊1?. 基于压缩耗能假设的粘弹性夹芯梁的横向振动[J]. 振动与冲击, 2016, 35(10): 185-191
HUANG Zhi-cheng 1, 2, QIN Zhao-ye Qin1, CHU Fu-lei1 . Transverse vibration of viscoelastic sandwich beams based on the compression dissipating energy assumption[J]. Journal of Vibration and Shock, 2016, 35(10): 185-191

参考文献

[1] Nakra B C. Vibration control in machines and structures using viscoelastic damping [J]. Journal of Sound and Vibration, 1998, 211(3):449-465
[2] Marcelo A T. Hybrid Active-Passive Damping Treatments Using Viscoelastic and Piezoelectric Materials: Review and Assessment [J]. Journal of Vibration and Control, 2002, 8:699–745.
[3] Kerwin E M. Damping of Flexural Waves by a Constrained Viscoelastic Layer [J]. Journal of the Acoustical Society of America, 1959, 31(7):952~962
[4] Unger E. E. and Kerwin E M. Loss factors of viscoelastic systems in therms of engergy concepts [J]. Journal of the Acoustical Society of America, 1962, 34(7):954~957
[5] Ditaranto, R.A. Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite Length Beams [J]. J. Applied Mechanics 1965, 87:881~886
[6] Mead, D.J.and Markus.S. The Forced Vibration of a Three-Layer Damping Sandwich Beam with Arbitrary Boundary Conditions [J]. J. Sound and Vibration 1969, 10(2):163~175
[7] Rao D K. Frequency and loss factors of sandwich beams under various boundary conditions [J]. Mechanical Engineering Science, 1978, 20: 271–282
[8]Johnson C D, Kienholz D A. Finite  element  prediction  of  damping  in  structures with constrained layers[J].AIAA J, 1982,120(9):1284-129
[9] Galucio A C, Deu J F, Ohayon R. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators [J]. Computational Mechanics, 2004, 33: 282–291
[10] Kumar N, Singh S P. Vibration and damping characteristics of beams with active constrained layer treatments under parametric variations [J]. Materials and Design, 2009, 30: 4162–417
[11] Daya E M, Potier-Ferry M. A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures [J]. Computer Structure, 2001,79(5):533–541.
[12] Bilasse M, Daya E M, Azrar L. Linear and nonlinear vibrations analysis of viscoelastic sandwich beams [J]. Journal of sound and vibration, 2010, 329: 4950-4969
[13] Douglas B. E. and Yang J. C. S. Transverse compressional damping in the vibratory response of elastic–viscoelastic–elastic beams [J]. American Institute of Aeronautics and Astronautics Journa, 1978, 16(9): 925–930.
[14] Douglas B. E. Compressional damping in three-layer beams incorporating nearly incompressible viscoelastic cores [J]. Journal of Sound and Vibration, 1986, 104(2): 343–347.
[15] Lee B.C. and Kim K. J. Consideration of both extensional and shear strain of core material in modal property estimation of sandwich plates [J]. Proceedings of the American Society of Mechanical Engineers Design Technical Conferences, 1995, 701–708.
[16] Sisemore C. L., Smaili A.A. and Darvennes C. M. Experimental measurement of compressional damping in an elastic–viscoelastic–elastic sandwich beam [J]. Proceedings of the American Society of Mechanical Engineers Noise Control and Acoustics Division, 1999, 223–227.
[17] Sisemore C. L and Darvennes C. M. Transverse vibration of elastic-viscoelastic-elastic sandwich beams: compression-experimental and analytical study [J]. Journal of Sound and Vibration, 2002, 252(1): 155–167.
[18] E.A.R. Specialty Composites, Zionsville, Indiana, USA, Material Data Sheets.
[19] Soni M L. Finite element analysis of viscoelastically damped sandwich structures, Shock Vibrat. Bull. 1981, 55 (1):97–109.
 

 

PDF(1114 KB)

472

Accesses

0

Citation

Detail

段落导航
相关文章

/