结构声传递控制一直是舰船结构声学设计需要解决的关键问题。动力吸振器是一种重要的波阻技术,具有很好的频段选择性,在舰船的应用日益广泛。针对动力吸振器阻抑板的结构声传递问题,提出了精细的波分析模型和波动力响应矩阵法。将结构离散为多个波导单元和波阻单元,建立附加动力吸振器的结构连接的广义波动力响应平衡方程,推导出波导单元的波动力响应特征矩阵及动力吸振器的附加波动响应特征矩阵,并代入平衡方程求解得到波导单元的振动幅值,从而求得传递效率与损失。数值研究表明动力吸振器在特定频段具有很好的波阻效果,并探讨了动力吸振器设计参数对其波阻特性的影响。研究为动力吸振器的声学设计提供了新的分析方法,在舰船减振降噪中具有重要的理论意义与工程应用价值。
Abstract
The control of structure-borne sound transmission is a key problem to be solved in acoustic design of marine structure. Dynamic vibration absorber is one of very important wave blocking techniques and has good frequency selectivity, which is widely used in naval ships. A fine theoretical model and wave dynamic response matrix method is put out to investigate the problem of impeding structure-borne sound transmission from dynamic vibration absorber. Firstly, the structure is discreted into many wave guide elements and wave resistance elements and a general wave dynamic response equilibrium equation of the junction is developed. Then, the wave dynamic response matrices of wave guide elements and the added wave dynamic response matrices of wave resistance elements are deduced. The vibration amplitudes of wave elements are obtained by resolving the equilibrium equation and the transmission efficiency and transmission loss are then obtained. The method is illustrated by a series of wave attenuation models with different design parameters. The numerical computation results show that the wave transmission loss of the specific frequency domain will be greatly improved. The research work provides a new analysis method for the acoustic design of dynamic vibration absorber, which has great theoretical significance and is of important value for practical engineering in noise and vibration reduction on board.
关键词
结构声 /
传递损失 /
波分析法 /
动力吸振器
{{custom_keyword}} /
Key words
structure-borne sound /
transmission loss /
wave analysis /
dynamic vibration absorber
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Cremer L, Heckl M, Ungar E E. Structure-borne Sound, Third edition[M]. Berlin: Springer-Verlag, 2005.
[2] 阿.斯.尼基福罗夫. 船舶结构声学设计[M]. 北京:国防工业出版社,1998.
Nikiforov A C. Acoustic design of ship hull structure[M]. Beijing: National Defense Industry Press, 1998.
[3] DYLEJKO P G. Optimum resonance changer for submerged vessel signature reduction[D]. Australia, University of New South Wales, 2007.
[4] 李俊,金咸定,王宏. 减小船体艉部振动的动力吸振器研
究[J]. 中国造船,2001, 23(2): 99 -101.
LI Jun, JIN Xian-ding, WANG Hong. Research on dynamic absorber for reducing vibration of ship stern[J]. Shipbuilding of China, 2001, 23(2): 99-101.
[5] 李俊,金咸定. 动力吸振器的宽带数值优化设计[J]. 振动与冲击, 2001, 20(2): 18-20.
LI Jun, JIN Xian-ding. Numerical optimal design for broadband dynamic absorber[J]. Journal of Vibration and Shock, 2001, 20(2): 18 -20.
[6] 杨志荣,秦春云等. 船舶推进轴系纵振动力吸振器设计及参数影响规律研究[J]. 振动与冲击, 2012, 31(16): 48-52.
YANG Zhi-rong, QIN Chun-yun, et al. Design and analysis of a dynamic absorber for reducing axial vibration of ship shafting[J]. Journal of Vibration and Shock, 2012, 31(16): 48-52.
[7] 韩彬. 基于动力吸振器的结构声传递抑制[D]. 武汉:华中科技大学,2006.
Han Bin. Impediment to structure-borne sound propagation using vibration absorbers[D]. Wuhan: Huazhong University of Science and Technology, 2006.
[8] 车驰东. 动力设备结构声传递的理论分析及阻波技术的研究[D]. 上海:上海交通大学,2008.
Che Chi-dong. Theoretical analysis on transmission and attenuation of structure-borne sound generated by power machineries[D]. Shanghai: Shanghai Jiaotong University, 2008.
[9] Kessissoglou N.J. Power transmission in L-shaped plates including flexural and in-plane vibration[J]. Journal of the Acoustical Society of America, 2004, 115(3): 1157-1169.
[10] 李军强,刘宏昭,王忠民. 线性粘弹性本构方程及其动力学应用研究综述[J]. 振动与冲击, 2005, 24(2): 116-123.
Lin Jun-qiang, Liu Hong-zhao, Wang Zhong-ming. Review on the linear constitutive equation and its dynamics application to viscoelastic materials[J].Journal of Vibration and Shock, 2005, 24(2): 116-123.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}