含负电容谐振分流电路的压电声子晶体梁的局域共振带隙与振动衰减

陈良1 杜红军1王刚2 张浩3

振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 38-43.

PDF(1537 KB)
PDF(1537 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 38-43.
论文

含负电容谐振分流电路的压电声子晶体梁的局域共振带隙与振动衰减

  • 陈良1 杜红军1王刚2 张浩3
作者信息 +

Locally resonant band gaps and the corresponding vibration attenuations of the piezoelectric phononic beam consisted of negative capacitor based resonant circuits

  •  CHEN Liang 1 DU Hongjun1WANG Gang 2 ZHANG Hao 3
Author information +
文章历史 +

摘要

通过在树脂梁上周期贴敷压电片,并连接由被动电阻-电感(RL)谐振分流电路和负电容(NC)电路串联而成的分流电路,构造了压电声子晶体梁结构。采用传递矩阵法计算了该类型压电声子晶体梁结构的带隙特性,并对电阻、电感和负电容对局域共振带隙的影响进行了深入分析,发现分流电路中的LC电磁振荡回路可产生局域共振带隙,而串联的负电容电路则可增强压电片的机电耦合效率,从而增强带隙衰减范围和衰减幅值。采用振动实验方法对理论分析结果进行了验证,证实串联的负电容对局域共振带隙的增强作用,为局域共振声子晶体的设计提供了新的思路。

Abstract

Periodic arrays of piezoelectric patches connected with serial negative capacitance-resistive-inductive (SNCRL) circuits are attached to an epoxy beam in order to construct a piezoelectric phononic beam structure. The band-gaps structure of the piezoelectric phononic beam is calculated with the transfer matrix approach. Subsequently, the influences of the resistance, inductance and negative capacitance parametric on locally resonant band-gaps are analysed. It is found that the LC oscillator circuit can lead to locally resonant band-gaps, and the negative capacitive circuits can enhance the electromechanical coupling efficiency of piezoelectric patches, i.e. the attenuation in the locally resonant band-gaps are enlarged thereby. Finally, vibration experiments are conducted to validate the theoretical predictions, and considerable gap enhancements by negative capacitance are observed. This work provides a new way in the design of phononic crystals with tunable band gaps.
 

关键词

声子晶体 / 压电分流 / 负电容 / 局域共振

Key words

phononic crystal / piezoelectric shunting / negative capacitive / locally resonant

引用本文

导出引用
陈良1 杜红军1王刚2 张浩3 . 含负电容谐振分流电路的压电声子晶体梁的局域共振带隙与振动衰减[J]. 振动与冲击, 2016, 35(10): 38-43
CHEN Liang 1 DU Hongjun1WANG Gang 2 ZHANG Hao 3. Locally resonant band gaps and the corresponding vibration attenuations of the piezoelectric phononic beam consisted of negative capacitor based resonant circuits[J]. Journal of Vibration and Shock, 2016, 35(10): 38-43

参考文献

[1] 温熙森.光子/声子晶体理论与技术[M].北京:科学出版社,2006
Wen Xi-sen. Phononic Crystals[M].Beijing, National Defense Industry Press, 2006.
[2] Thorp O, Ruzzen M, Baz A. Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches[J].Smart Material and Structrues.2001,10 (5):979-989.
[3] Spadoni A, Ruzzene M, Cunefare K. Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(9): 979-990.
[4] Wang G, Chen S B, Wen J H. Low-frequency locally resonant band gaps induced by arrays of resonant shunts with Antoniou's circuit: experimental investigation on beams [J]. Smart Materials and Structures, 2011, 20(4):015026.
[5] Dai L X, Jiang S, Lian Z Y, et al. Locally resonant band gaps achieved by equal frequency shunting circuits of piezoelectric rings in a periodic circular plate [J],Journal of Sound and Vibration,2015,337:150-160.
[6] Airoldi L, Ruzzene M. Wave propagation control in beams through periodic multi-branch shunts [J], Journal of Intelligent Material Systems and Structures, 2011, 10(6): 1567-1578.
[7] Collet M, Ouisse M, Ichchou M N, et al. Semi-active optimization of 2D wave dispersion into shunted piezo-composite systems for controlling acoustic interaction[J]. Smart Materials and Structures, 2012, 21(4):094002.
[8] Chen S B, Wen J H, Yu D L, et al. Band gap control of phononic beam with negative capacitance piezoelectric shunt[J].China Physics B,2011,20(1):014301.
[9] Casadei F, Beck B S, Cunefare K A, et al. Vibration control of plates through hybrid configurations of periodic piezoelectric shunts [J]. Journal of Intelligent Material Systems and Structures, 2012,23(10): 1169-1177.
[10] Zhang H, Wen J H, Chen S B, et al. Flexural wave band-gaps in phononic meta-material beam with hybrid shunting circuits [J].China Physics B, 2015, 24(3):036201.
[11] Chen S B, Wen J H, Wang G, et al. Improved modeling of rods with periodic arrays of shunted piezoelectric patches [J]. Journal of Intelligent Material Systems and Structures, 2012, 23(6): 1613-1621.
[12] Meirovitch L. Fundamentals of vibrations [M]. New York: McGraw-Hill Co, 2001.
[13] 李凤明,汪越胜.压电周期结构振动主动控制研究[J]机械工程学报,2004,17: 828-830.
    Li F M, Wang Y S. Active vibration control of the piezoeletric periodic structure [J] Journal of Mechanical Engineering, 2004,17: 828-830.
[14] Ashcroft N W, Mermin N D. Solid State Physics [M], Philadelphia, PA: Sasunders, 1976.
[15] Antoniou A. Realization of gyrators using operational amplifiers and their use in RC-active-network synthesis [J]. Proc. IEEE, 1969, 116(2):1838-1850.
[16] Tang J, Wang K W. Active-passive hybrid piezoelectric networks for vibration control: Comparisons and improvement [J]. Smart Materials and Structures, 2001, 10(4): 794-806.
[17] 马小路,裘进浩,季宏丽.负电容在主动-被动混合压电振动控制中的应用[J].华南理工大学学报,2012,3(40),107-112.
MA Xiao-lu, QIU Jin-hao, JI Hong-li. Application of negative capacitance to active-passive hybrid piezoelectric vibration control [J].Journal of South China University of Technology, 2012,3(40),107-11

PDF(1537 KB)

922

Accesses

0

Citation

Detail

段落导航
相关文章

/