[1] Wang J, Li R, Peng X. Survey of nonlinear vibration of gear transmission systems [J]. Applied Mechanics Reviews, 2003, 56(3): 309-329.
[2] 李明, 孙涛, 胡海岩. 齿轮传动转子-轴承系统动力学的研究进展[J]. 振动工程学报, 2002(03): 5-12.
Li Ming, Sun Tao, Hu Haiyan. Review on dynamics of geared
rotor-bearing systems [J]. Journal of Vibration Engineering, 2002,
15(03): 5-12.
[3] Lu J, Chen H, Zeng F, et al. Influence of system parameters on dynamic behavior of gear pair with stochastic backlash [J]. Meccanica, 2014, 49(2): 429-440.
[4] Wen Y, Yang J, Wang S. Random dynamics of a nonlinear spur gear pair in probabilistic domain [J]. Journal of Sound and Vibration, 2014, 333(20): 5030-5041.
[5] 陈会涛, 吴晓铃, 秦大同, 等. 随机内外激励对齿轮系统动态特性的影响分析[J]. 中国机械工程, 2013(04): 533-537.
Chen Huitao, Wu Xiaoling, Qin Datong, et al. Dynamic characteristics of gear transmission system subjected to random internal and external excitation [J]. China Mechanical Engineering, 2013(04): 533-537.
[6] 魏永祥, 陈建军, 马洪波. 随机参数齿轮系统的非线性动力响应分析[J]. 工程力学, 2012(11): 319-324.
Wei Yongxiang, Chen Jianjun, Ma Hongbo. Analysis of nonlinear dynamic response of gear-rotor with random parameters [J]. Engineering Mechanics, 2012(11): 319-324.
[7] 邓绪山, 杨兵, 刘增民. 基于轮齿随机误差的齿轮系统动力学分析[J]. 机械传动, 2011(10): 31-34.
Deng Chushan, Yang Bing, Liu Zengmin. Dynamic analysis of gear system based on the random gear errors [J]. Journal of Mechanical Transmission, 2011, (10): 31-34.
[8] 魏永祥, 陈建军, 拓耀飞. 随机参数时变齿轮副的动力响应分析[J]. 中南大学学报(自然科学版), 2011, 42(3): 708-713.
Wei Yongxiang, Chen Jianjun, Tuo Yaofei. Dynamic response of gear with random parameters and time-varying stiffness [J]. Journal of Central South University (Science and Technology), 2011, 42(3): 708-713.
[9] Lu J, Zeng F, Xin J, et al. Influences of stochastic perturbation of parameters on dynamic behavior of gear system [J]. Journal of Mechanical Science and Technology, 2011, 25(7): 1667-1673.
[10] 卢剑伟, 曾凡灵, 杨汉生, 等. 随机装配侧隙对齿轮系统动力学特性的影响分析[J]. 机械工程学报, 2010(21): 82-86.
Lu Jianwei, Zeng Fanling, Yang Hansheng, et al. Influence of stochastic assembling backlash on nonlinear dynamic behavior of transmission gear pair [J]. Journal of Mechanical Engineering, 2010(21): 82-86.
[11] Mo E, Naess A. Nonsmooth dynamics by path integration: An example of stochastic and chaotic response of a meshing gear pair [J]. Journal of Computational and Nonlinear Dynamics, 2009, 4(3): 034501.
[12] Naess A, Kolnes F E, Mo E. Stochastic spur gear dynamics by numerical path integration [J]. Journal of Sound and Vibration, 2007, 302(4-5): 936-950.
[13] Bonori G, Pellicano F. Non-smooth dynamics of spur gears with manufacturing errors [J]. Journal of Sound and Vibration, 2007, 306(1-2): 271-283.
[14] Driot N, Perret-Liaudet J. Variability of modal behavior in terms of critical speeds of a gear pair due to manufacturing errors and shaft misalignments [J]. Journal of Sound and Vibration, 2006, 292(3-5): 824-843.
[15] Moore R E. Interval analysis [M]. Englewood Cliffs, New Jersey: Prentice-Hall, 1966.
[16] Lin Y, Enszer J A, Stadtherr M A. Enclosing all solutions of two-point boundary value problems for ODEs [J]. Computers & Chemical Engineering, 2008, 32(8): 1714-1725.
[17] Lin Y, Stadtherr M A. Validated solution of initial value problems for ODEs with interval parameters [C]//NSF Workshop Proceeding on Reliable Engineering Computing, Savannah GA. 2006.
[18] Wang C, Gao W, Song C, et al. Stochastic interval analysis of natural frequency and mode shape of structures with uncertainties [J]. Journal of Sound and Vibration, 2014, 333(9): 2483-2503.
[19] Hu J, Qiu Z. Non-probabilistic convex models and interval analysis method for dynamic response of a beam with bounded uncertainty [J]. Applied Mathematical Modelling, 2010, 34(3): 725-734.
[20] Rama Rao M V, Pownuk A, Vandewalle S, et al. Transient response of structures with uncertain structural parameters [J]. Structural Safety, 2010, 32(6): 449-460.
[21] Wei S, Zhao J, Han Q, et al. Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty [J]. Renewable Energy, 2015, 78: 60-67.
[22] Wu J, Zhang Y, Chen L, et al. A Chebyshev interval method for nonlinear dynamic systems under uncertainty. 2013: 37, 4578-4591.
[23] Blankenship G W, Kahraman A. Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity [J]. Journal of Sound and Vibration, 1995, 185(5): 743 - 765.
[24] Kahraman A, Blankenship G W. Interactions between commensurate parametric and forcing excitations in a system with clearance [J]. Journal of Sound and Vibration, 1996, 194(3): 317 - 336.
[25] Cameron T M, Griffin J H. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems [J]. Journal of Applied Mechanics, 1989, 56: 149-154.
[26] Moore R E, Kearfott R B, Cloud M J. Introduction to interval analysis [M]. Philadelphia: Society for Industrial Mathematics, 2009.