考虑不确定参数的齿轮副非线性动态特性分析

魏莎,韩勤锴,褚福磊

振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 44-48.

PDF(1466 KB)
PDF(1466 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 44-48.
论文

考虑不确定参数的齿轮副非线性动态特性分析

  • 魏莎,韩勤锴,褚福磊
作者信息 +

Nonlinear Dynamic Analysis of Gear-Pair Systems with Uncertainties

  • WEI Sha  HAN Qin-kai  CHU Fu-lei
Author information +
文章历史 +

摘要

为分析系统动力学参数的不确定性对齿轮副动态响应的影响情况,建立含齿侧间隙和时变啮合刚度的齿轮副动力学模型,并运用区间谐波平衡法分析了考虑区间系统参数的齿轮副非线性系统动态响应。区间谐波平衡法主要是将谐波平衡法与Chebyshev区间包含函数相结合,通过该方法对比分析了两种不同阻尼情况下的齿轮系统频域响应情况。结果表明:在弱阻尼(ζ <<1)情况下,系统存在明显的非线性跳跃现象,而且系统频域响应对刚度参数和阻尼参数的波动性不敏感,而对激励参数和齿侧间隙的波动性敏感。而当ζ = 0.1时,系统响应的非线性跳跃现象消失,系统响应幅值降低。刚度参数、载荷参数和齿侧间隙的波动性对所分析区域内的系统响应均有明显影响。阻尼参数的波动性对系统响应的影响则集中于主共振区域。

Abstract

The nonlinear dynamic model of a gear pair with backlash and time-varying mesh stiffness is developed to investigate the effects of uncertain dynamic parameters on the dynamic characteristics of the system. The interval harmonic balance method based on the harmonic balance method and the Chebyshev inclusion function is presented. Amplitude frequency responses of two different damping cases are compared. The results show that: at the weak damping case (ζ<<1), the system has obvious nonlinear jumping phenomenon. In addition, the dynamic characteristics of the system are sensitive to the variabilities of the excitation parameters and backlash. They are insensitive to the variabilities of the stiffness and damping parameters. The jumping phenomenon is disappeared and the amplitudes are decreasing when the damping ratio is equal to 0.1. Furthermore, the variabilities of the stiffness parameter, excitation parameters and backlash have significant effects on dynamic response of the system. The influence of uncertain damping on the dynamic response focuses upon the resonance region.

关键词

齿轮 / 动态响应 / 谐波平衡法 / Chebyshev包含函数 / 不确定参数

Key words

gear / dynamic response / harmonic balance method / Chebyshev inclusion function / interval analysis

引用本文

导出引用
魏莎,韩勤锴,褚福磊. 考虑不确定参数的齿轮副非线性动态特性分析[J]. 振动与冲击, 2016, 35(10): 44-48
WEI Sha HAN Qin-kai CHU Fu-lei. Nonlinear Dynamic Analysis of Gear-Pair Systems with Uncertainties[J]. Journal of Vibration and Shock, 2016, 35(10): 44-48

参考文献

[1] Wang J, Li R, Peng X. Survey of nonlinear vibration of gear transmission systems [J]. Applied Mechanics Reviews, 2003, 56(3): 309-329.
[2] 李明, 孙涛, 胡海岩. 齿轮传动转子-轴承系统动力学的研究进展[J]. 振动工程学报, 2002(03): 5-12.
Li Ming, Sun Tao, Hu Haiyan. Review on dynamics of geared
rotor-bearing systems [J]. Journal of Vibration Engineering, 2002,
15(03): 5-12.
[3] Lu J, Chen H, Zeng F, et al. Influence of system parameters on dynamic behavior of gear pair with stochastic backlash [J]. Meccanica, 2014, 49(2): 429-440.
[4] Wen Y, Yang J, Wang S. Random dynamics of a nonlinear spur gear pair in probabilistic domain [J]. Journal of Sound and Vibration, 2014, 333(20): 5030-5041.
[5] 陈会涛, 吴晓铃, 秦大同, 等. 随机内外激励对齿轮系统动态特性的影响分析[J]. 中国机械工程, 2013(04): 533-537.
Chen Huitao, Wu Xiaoling, Qin Datong, et al. Dynamic characteristics of gear transmission system subjected to random internal and external excitation [J]. China Mechanical Engineering, 2013(04): 533-537.
[6] 魏永祥, 陈建军, 马洪波. 随机参数齿轮系统的非线性动力响应分析[J]. 工程力学, 2012(11): 319-324.
Wei Yongxiang, Chen Jianjun, Ma Hongbo. Analysis of nonlinear dynamic response of gear-rotor with random parameters [J]. Engineering Mechanics, 2012(11): 319-324.
[7] 邓绪山, 杨兵, 刘增民. 基于轮齿随机误差的齿轮系统动力学分析[J]. 机械传动, 2011(10): 31-34.
Deng Chushan, Yang Bing, Liu Zengmin. Dynamic analysis of gear system based on the random gear errors [J]. Journal of Mechanical Transmission, 2011, (10): 31-34.
[8] 魏永祥, 陈建军, 拓耀飞. 随机参数时变齿轮副的动力响应分析[J]. 中南大学学报(自然科学版), 2011, 42(3): 708-713.
Wei Yongxiang, Chen Jianjun, Tuo Yaofei. Dynamic response of gear with random parameters and time-varying stiffness [J]. Journal of Central South University (Science and Technology), 2011, 42(3): 708-713.
[9] Lu J, Zeng F, Xin J, et al. Influences of stochastic perturbation of parameters on dynamic behavior of gear system [J]. Journal of Mechanical Science and Technology, 2011, 25(7): 1667-1673.
[10] 卢剑伟, 曾凡灵, 杨汉生, 等. 随机装配侧隙对齿轮系统动力学特性的影响分析[J]. 机械工程学报, 2010(21): 82-86.
Lu Jianwei, Zeng Fanling, Yang Hansheng, et al. Influence of stochastic assembling backlash on nonlinear dynamic behavior of transmission gear pair [J]. Journal of Mechanical Engineering, 2010(21): 82-86.
[11] Mo E, Naess A. Nonsmooth dynamics by path integration: An example of stochastic and chaotic response of a meshing gear pair [J]. Journal of Computational and Nonlinear Dynamics, 2009, 4(3): 034501.
[12] Naess A, Kolnes F E, Mo E. Stochastic spur gear dynamics by numerical path integration [J]. Journal of Sound and Vibration, 2007, 302(4-5): 936-950.
[13] Bonori G, Pellicano F. Non-smooth dynamics of spur gears with manufacturing errors [J]. Journal of Sound and Vibration, 2007, 306(1-2): 271-283.
[14] Driot N, Perret-Liaudet J. Variability of modal behavior in terms of critical speeds of a gear pair due to manufacturing errors and shaft misalignments [J]. Journal of Sound and Vibration, 2006, 292(3-5): 824-843.
[15] Moore R E. Interval analysis [M]. Englewood Cliffs, New Jersey: Prentice-Hall, 1966.
[16] Lin Y, Enszer J A, Stadtherr M A. Enclosing all solutions of two-point boundary value problems for ODEs [J]. Computers & Chemical Engineering, 2008, 32(8): 1714-1725.
[17] Lin Y, Stadtherr M A. Validated solution of initial value problems for ODEs with interval parameters [C]//NSF Workshop Proceeding on Reliable Engineering Computing, Savannah GA. 2006.
[18] Wang C, Gao W, Song C, et al. Stochastic interval analysis of natural frequency and mode shape of structures with uncertainties [J]. Journal of Sound and Vibration, 2014, 333(9): 2483-2503.
[19] Hu J, Qiu Z. Non-probabilistic convex models and interval analysis method for dynamic response of a beam with bounded uncertainty [J]. Applied Mathematical Modelling, 2010, 34(3): 725-734.
[20] Rama Rao M V, Pownuk A, Vandewalle S, et al. Transient response of structures with uncertain structural parameters [J]. Structural Safety, 2010, 32(6): 449-460.
[21] Wei S, Zhao J, Han Q, et al. Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty [J]. Renewable Energy, 2015, 78: 60-67.
[22] Wu J, Zhang Y, Chen L, et al. A Chebyshev interval method for nonlinear dynamic systems under uncertainty. 2013: 37, 4578-4591.
[23] Blankenship G W, Kahraman A. Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity [J]. Journal of Sound and Vibration, 1995, 185(5): 743 - 765.
[24] Kahraman A, Blankenship G W. Interactions between commensurate parametric and forcing excitations in a system with clearance [J]. Journal of Sound and Vibration, 1996, 194(3): 317 - 336.
[25] Cameron T M, Griffin J H. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems [J]. Journal of Applied Mechanics, 1989, 56: 149-154.
[26] Moore R E, Kearfott R B, Cloud M J. Introduction to interval analysis [M]. Philadelphia: Society for Industrial Mathematics, 2009.
 

PDF(1466 KB)

Accesses

Citation

Detail

段落导航
相关文章

/