基于人工鱼群算法的位移型阻尼器位置和参数的优化方法

闫维明,杲晓龙,谢志强,彭凌云

振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 66-72.

PDF(2422 KB)
PDF(2422 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (10) : 66-72.
论文

基于人工鱼群算法的位移型阻尼器位置和参数的优化方法

  • 闫维明,杲晓龙,谢志强,彭凌云
作者信息 +

Optimization method for the placements and parameters of displacement-based dampers using artificial fish swarm algorithm

  • YAN Wei-ming ,GAO Xiao-long ,XIE Zhi-qiang,PENG Lingyun
Author information +
文章历史 +

摘要

对耗能减震结构中,阻尼器参数和位置决定着结构的减震效果。基于人工鱼群算法提出一种针对位移型阻尼器优化设计的人工鱼群优化模型,模型面向以有限元模型表示的多维多自由度实际结构,对各层位移型阻尼器的位置和参数进行优化。针对结构中添加位移型阻尼器会使结构层剪力增大的问题,提出一种同时考虑结构各楼层层间位移角、各楼层加速度和层剪力变化的优化目标函数,同时利用均方根的形式更加有效的反应各响应在地震波峰值段的变化特性。结构减震控制优化设计时可根据结构的不同设计需求修正目标函数的加权系数。最后,通过数值算例验证本文优化模型的有效性。

Abstract

In an energy dissipation structure, the seismic mitigation effect of the dampers is depended on the parameters and placements. An optimized model, which is based on artificial fish swarm algorithm, is proposed for the optimal design of displacement-based dampers. This model can be applied to the finite element model structure with multi dimensions and degrees of freedom to determinate the placements and parameters of displacement-based dampers in each story. In order to deal with the increment of story shear force after installing displacement-based dampers, an optimized objective function is proposed, in which the variation of maximum story-drift angle, story acceleration and story shear force is considered, and simultaneously, using the form of root mean square (rms) to reflect the vibration properties of each responses in the process of earthquake wave more effectively. In the optimized designing process of the energy dissipation structure, the weighting coefficients of the objective function can be flexibly adjusted according to the design demands. At the end of this paper, some examples are illustrated to verify the effectiveness of the new mathematic model.

 

关键词

耗能结构 / 位移型阻尼器 / 鱼群算法 / 阻尼器位置 / 阻尼器参数

Key words

 dissipative structure / displacement-based dampers / fish swarm algorithm / placement of damper / parameter of damper

引用本文

导出引用
闫维明,杲晓龙,谢志强,彭凌云. 基于人工鱼群算法的位移型阻尼器位置和参数的优化方法[J]. 振动与冲击, 2016, 35(10): 66-72
YAN Wei-ming,GAO Xiao-long,XIE Zhi-qiang,PENG Lingyun. Optimization method for the placements and parameters of displacement-based dampers using artificial fish swarm algorithm[J]. Journal of Vibration and Shock, 2016, 35(10): 66-72

参考文献

[1] Takewaki Ι. Optimal damper placement for minimum transfer functions Earthquake [J]. Engineering and Structural Dynamics,1997, 26(11):1113–1124.
[2] Aydin E, Boduroglu MH, Guney D. Optimal damper distribution for seismic rehabilitation of planar building structures. Engineering Structures 2007;29(2):176–185.
[3] Seyed Amin Mousavi, Amir K. Ghorbani-Tanha. Closure to “Discussion on ‘Optimum placement and
characteristics of velocity-dependent dampers under seismic excitation by SA Mousavi and AK Ghorbani-Tanha” by Izuru Takewaki[J]. Earthquake Engineering and Engineering Vibration ,2013, 12(4): 681-682.
[4] SinghM P, MoreschiLM. Optimal seismic response control with dampers[J]. Earthquake Engineering& StructuralDy-namics, 2001, 30(4): 553-572.
[5] Moreschi L M, Singh M P. Design of yielding metallic and friction dampers for optimal seismic performance [J]. Earthquake Engineering and Structural Dynamics, 2003,32(8): 1291―1311.
[6] 李 钢, 李宏男. 位移型耗能减震结构优化设计[J]. 振动与冲击,2007,26(4):65-68.
     Li Gang, Li Hong-nan. Optimum Design of displacement-based energy dissipative devices [J]. Jouranl of Vibration And Shock. 2007,26(4):65-68.
[7] Singh M P, Moreschi L M. Optimal placement of dampers for passive response control [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(4): 955―976.
[8] 黄铭枫,唐家祥. 高层建筑粘弹性阻尼器的优化设置[J]. 华中科技大学学报,2001,29(11):73-75.
    Huang Ming-feng, Tang Jia-xiang. Optimum Installation of the Viscoelastic Dampers[J]. J.Huazhong Univ. of Sci. & Tech, 2001,29(11):73-75.
[9]  曲激婷,李宏男,李 钢. 位移型消能器在结构减震控制中的位置优化研究[J]. 工程力学,2009,26(1):43-48.
    Qu Ji-ting , Li Hong-nan , Li Gang. Optimal placement of displacement-based energy dissipative devices for passive response control[J]. Engineering Mechanics, 2009,26(1):43-48.
[10] 乌 兰,李爱群,沈顺高. 基于遗传算法的偏心结构粘滞阻尼器优化布置研究[J]. 工程抗震与加固改造,2014,36(2):1-7.
    Wu Lan, Li Ai-qun, Shen Shun-gao. Optimal Distribution of Viscous Damper for Eccentric Structure by Genetic Algorithm[J]. Earthquake Resistant Engineering and Retrofitting, 2014,36(2):1-7.
[11] 周丽萍,凌云,徐斌. 基于鱼群算法的耦合地震作用下钢结构-控制系统协同优化设计[J]. 工业建筑,2014,44(7):164-169.
Zhou Li-ping, Ling Yun, Xu Bin. Integrated optimization of steel structure and control system under coupling earthquake based on artificial fish awarm algorithm[J]. Industrial Construction,2014,44(7):164-169.
[12] 李亮,迟世春,林皋. 禁忌鱼群算法及其在边坡稳定分析中的应用[J]. 工程力学,2006,23(3):6-10.
    Li Liang , Chi Shi-chun , Lin Gao. Tabu fish swarm algorithm and its application to slope stability analysis[J]. Engineering Mechanics, 2006,23(3):6-10.
 [13] 李钢, 李宏男. 位移型耗能减震结构对框架柱轴力影响的研究[J]. 建筑结构,2009,39(2):25-27.
    Li Gang, Li Hong-nan. Study on influence of column axial force on the dissipative buildings[J]. Building Structure, 2009,39(2):25-27.
 [14] 闫维明,王维凝,彭凌云. 不同水准地震作用下铅阻尼器附加给结构的有效阻尼比及其设计取值研究[J]. 工程力学,2014,31(3):173-180.
    Yan Wei-ming, Wang Wei-ning, Peng Ling-yun. Study on the additional damping ratio provided by lead dampers and its design values under different earthquake standards[J]. Engineering Mechanics, 2014, 31(3):173-180.
[15] GB 50011-2010, 建筑结构抗震规范[S]. 北京: 中国建筑工业出版社, 2010.
    GB 50011-2010, Code for seismic design of buildings
[S] Beijing: China Architecture & Building Press, 2010.(in Chinese)
[16] 李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践, 2002, 22(11): 32-38.
    Li Xiao-lei, Shao Zhi-jiang, Qian Ji-xin. An Optimizing Method Based on Autonomous Animats: Fish-swarm Algorithm[J]. Systems  Engineering- Theory & Practice. 2002, 22(11): 32-38.

PDF(2422 KB)

Accesses

Citation

Detail

段落导航
相关文章

/