含输入时滞的电动汽车悬架系统有限频域振动控制的研究

陈长征1,2,王刚1,于慎波1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (11) : 130-137.

PDF(1485 KB)
PDF(1485 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (11) : 130-137.
论文

含输入时滞的电动汽车悬架系统有限频域振动控制的研究

  • 陈长征1,2,王刚1,于慎波1
作者信息 +

The research on finite frequency vibration control of electric vehicles with actuator input delay

  • CHEN Chang-zheng1, 2  WANG Gang1  YU Shen-bo1
Author information +
文章历史 +

摘要

由于轮毂电机驱动的电动汽车的驱动系统安装在轮毂处,使得汽车悬架系统簧下质量增加,造成舒适性变差及电机轴承磨损严重等问题。基于上述现象,并综合考虑控制回路的输入时滞及参数摄动因素,研究了该类悬架系统的有限频域动态输出反馈振动控制策略。对比于传统的时滞全频域的H∞控制方法,该方法能在人体对振动较为敏感的频段内取得更好的干扰衰减,同时也能保证相关的时域硬约束。为了降低车身加速度在非簧载模态频率处的奇异值,并减少传递到电机轴承上的力,考虑将动力吸振器(DVA)安装在电机轴承座上。通过Lyapunov-Krasovskii泛函及广义KYP引理,以线性矩阵不等式的形式推导出基于动态输出反馈的控制准则。最后,通过一个数值实例验证该方法在频域及时域的有效性。

Abstract

For an in-wheel motor driven electric vehicle, its propulsion system is installed on the wheel hub position and the unsprung mass of the vehicle suspension system is increased, which may severely deteriorate the riding comfort and cause problems like severe wear of motor bearings. Considering the above phenomenon as well as the input delay and parametric uncertainties of control loop, the thesis studies the finite frequency dynamic output-feedback vibration control strategy for this kind of suspension system. Compared with the traditional entire frequency H∞ approach, the approach introduced in the thesis can achieve a better disturbance attenuation within the frequency band during which the human body is comparatively more sensitive to vibration. In the meanwhile, related time-domain rigid constraints are also guaranteed. In order to minimize the singular value response of body acceleration to unsprung mass modal frequency and reduce the force transmitted to motor bearing, a dynamic vibration absorber (DVA) is installed in the motor bearing. Through the generalized Kalman-Yakubovich-Popov(KYP) lemma and Lyapunov-Krasovskii functional, the control criterion based on dynamic output-feedback is derived in the form of LMIs. At last, a numerical example is given to test and verify the applicability of the proposed control method in the frequency domain and time domain.

 

关键词

有限频域振动控制;主动悬架;输入时滞;广义KYP引理;H&infin / 控制

Key words

 Finite frequency vibration control / Active suspensions / Input delay / Generalized KYP lemma / H&infin / control

引用本文

导出引用
陈长征1,2,王刚1,于慎波1. 含输入时滞的电动汽车悬架系统有限频域振动控制的研究[J]. 振动与冲击, 2016, 35(11): 130-137
CHEN Chang-zheng1, 2 WANG Gang1 YU Shen-bo1. The research on finite frequency vibration control of electric vehicles with actuator input delay[J]. Journal of Vibration and Shock, 2016, 35(11): 130-137

参考文献

[1] WANG R, CHEN Y, FENG D, et al. Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors[J]. Journal of Power Sources, 2011, 196(8): 3962–3971.
[2] WANG R, JING H, YAN F, et al. Optimization and finite-frequency H∞ control of active suspensions in in-wheel motor driven electric ground vehicles[J]. Journal of the Franklin Institute, 2015, 352(2): 468-484.
[3] CHEN H, GUO K H. Constrained H∞ control of active suspensions: an LMI approach[J]. IEEE Transactions on Control Systems Technology, 2005, 13(3): 412 - 421.
[4] 李荣, 焦晓红, 杨超. 基于动态输出反馈的半车主动悬架系统鲁棒控制[J]. 振动与冲击,2014, 33(7): 187-193.
LI Rong, JIAO Xiao-hong, Yang Chao. Output feedback-based robust control for a half-car hydraulic active suspension system[J]. Journal of Vibration and Shock, 2014, 33(7): 187-193.
[5] LI P, LAM J, CHEUNG K C. Multi-objective control for active vehicle suspension with wheelbase preview[J]. Journal of Sound and Vibration, 2014, 333(21): 5269-5282.
[6] GUO L X, ZHANG L P. Robust H∞ control of active vehicle suspension under non-stationary running[J]. Journal of Sound and Vibration, 2012, 331(26): 5824-5837.
[7] SUN W, GAO H, KAYNAK O. Finite frequency H∞ control for vehicle active suspension systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(2): 416-422.
[8] SUN W, LI J, ZHAO Y, et al. Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic[J]. Mechatronics, 2011, 21(1): 250-260.
[9] SUN W, ZHAO Y, LI J, et al. Active suspension control with frequency band constraints and actuator input delay[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1): 530-537.
[10] IWASAKI T, HARA S. Generalized KYP lemma: unified frequency domain inequalities with design applications[J]. IEEE Transactions on Automatic Control, 2005, 50(1): 41-59.
[11] ZHANG H, WANG R, WANG J, et al. Robust finite frequency H∞ static-output-feedback control with application to vibration active control of structural systems[J]. Mechatronics, 2014, 24(4): 354-366.
[12] DU H, ZHANG N. H∞ control of active vehicle suspensions with actuator time delay[J]. Journal of Sound and Vibration, 2007, 301(1-2): 236-252.
[13] ZHAO Y, SUN W, GAO H. Robust control synthesis for seat suspension systems with actuator saturation and time-varying input delay[J]. Journal of Sound and Vibration, 2010, 329(21): 4335-4353.
[14] Li H, Jing X, Karimi H. Output-feedback-based H∞ control for vehicle suspension systems with control delay[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 436-446.
[15] ALI M S, SARAVANAKUMAR R. Novel delay-dependent robust H∞ control of uncertain systems with distributed time-varying delays[J]. Applied Mathematics and Computation, 2014, 249: 510-520.
[16] WU M, HE Y, SHE J H, et al. Delay-dependent criteria for robust stability of time-varying delay systems[J]. Automatica, 2004, 40(8): 1435-1439.

PDF(1485 KB)

Accesses

Citation

Detail

段落导航
相关文章

/